Synthesis, Properties and X-ray Crystal Structure of Schiff Base Organoimido Complexes of Rhenium(V)

R. ROSSI, A. MARCHI, A. DUATTI, L. MAGON*

Istituto Chimico, Università di Ferrara, Ferrara, Italy

U. CASELLATO, R. GRAZIANI

Istituto di Chimica e Tecnologia dei Radioelementi del C.N.R. and Istituto di Chimica Generale, Università di Padova, Padua, Italy

and G. POLIZZOTTI

Istituto di Ingegneria Chimica, Università di Palermo, Palermo, Italy

Received March 7, 1984

 $Re(NR)Cl_3(PPh_3)_2$ ($R = p-CH_3C_6H_4$, CH_3) react with polydentate ligands (LH = N-methyl-, N-phenyl-, N-tolyl-salicylideneimine, half N,N'-ethylenebis-, half N,N'-propylenebis-(salicylideneimine), 8-hydroxyquinoline and $LH_2 = N$ -2-hydroxyphenylsalicylideneimine) to yield complexes of the type $Re(NR)Cl_2$ -(L)PPh₃. With 8-hydroxyquinoline the bisubstituted $Re(NR)Cl(L)_2$ complexes are also obtained. The compounds were characterized by elemental analysis, molecular weight, and i.r. spectra.

The crystal and molecular structures of two arylimido complexes, $Re(p-CH_3C_6H_4N)Cl_2(RN=CH-C_6H_4O)PPh_3$ with $R = C_6H_5$ or CH_3 , were determined from X-ray crystallography based on diffractometer data. The phenyl compound crystallizes in space group $P2_1/c$ of the monoclinic system, with a =15.340(5) Å, b = 21.115(6) Å, c = 10.605(5) Å, $\beta =$ $91.36(5)^\circ$, and $D_x = 1.59$ g cm⁻³ for four formula units in the cell. The structure has been refined by least-squares to the final R factor of 4.7% for the 3931 reflexions above background.

The methyl compound crystallizes in space group $P\overline{I}$ of the triclinic system, with a = 13.457(5) Å, b = 11.795(5) Å, c = 10.997(5) Å, $\alpha = 112.16(5)^{\circ}$, $\beta = 108.17(5)^{\circ}$, $\gamma = 86.36(5)^{\circ}$, and $D_x = 1.64$ g cm⁻³ for two formula units in the cell. The structure has been refined by least-squares to the final R factor of 8.0% for the 4891 reflexions above background. The overall molecular structure is the same for both complexes. The Re atom is in a distorted octahedral configuration with two Cl atoms trans to one another, the arylimido group (bonded to Re via the N atom) trans to the O atom of the bidentate ligand, and the PPh₃ group trans to the N atom of the

bidentate ligand. Bond distances and angles in the two molecules agree well. Mean values for some bond distances involving rhenium are: Re-Cl 2.418 Å; Re-P 2.44 Å; Re-O 1.98 Å; Re-N(arylimido) 1.73 Å; Re-N 2.14 Å.

Introduction

The most important class of octahedral rhenium-(V) halide compounds includes oxo-, imido- and nitrido-complexes as $ReOX_3(L)_2$, $Re(NR)X_3(L)_2$ and $ReNX_2(L)_3$ (X = halogen, L = tertiary phosphine).

The synthesis of the nitrogen-rhenium(V) derivatives involves as starting compound the above mentioned oxo-complex and many appropriate reagents which, in the case of organoimido-derivatives are ArN_2 , ArNCO, Ph_3PNAr , ArNHNHCOPh, ArNSO[1].

We have recently studied the reactivity of ReOCl₃-(PPh₃)₂ with pseudo-ally ligands such as triazenido [RN=N-NR]⁻ [2] and formamidino [RN=CH-NR]⁻. This latter reagent gives Re(NR)Cl₃(PPh₃)₂ (R = C₆H₅, p-CH₃C₆H₄, p-ClC₆H₄, p-FC₆H₄) as the main product, which represents a new route to the synthesis of organoimido-rhenium complexes [3].

An analogous behaviour should be expected for oxo and organoimido compounds, based on the strong bonding capability of the imido ligand (NR) and of the isoelectronic oxo and nitrido ligands, as suggested by some structural results [3-5].

We have reported [6] that the reaction of ReOX_3 -(PPh₃)₂ (X = Cl, Br) with some bidentate monoanionic ligands (LH) as Schiff base results in the formation of rhenium(V) complexes of the type $\text{ReOX}_2(L)\text{PPh}_3$ and $\text{ReOX}(L)_2$. In order to compare

^{*}Author to whom correspondence should be addressed.

Comple	X	M.p. ^a	Colour	Yield	M.w.	Found (Calcd.	% (
				%	Found (Calcd.)	С	Н	N	CI
1	Re(NTo)Cl ₂ (Me-Sal)PPh ₃	233	dark-green	80	810(758.4)	51.7(52.2)	3.9(4.0)	3.6(3.7)	10.8(9.3)
H	Re(NTo)Cl ₂ (Ph-Sal)PPh ₃	224	brown-green	70	823(820.5)	55.5(55.6)	3.9(3.9)	3.3(3.4)	8.1(8.6)
Ш	Re(NTo)Cl ₂ (To-Sal)PPh ₃	209	dark-green	70	825(820.5)	55.8(56.1)	3.9(4.1)	3.1(3.3)	7.8(7.5)
2	cis-Re(NTo)Cl2(Oxine)PPh3	200	green	20	750(768.4)	52.3(53.1)	4.7(5.0)	3.5(3.6)	8.8(9.2)
>	trans-Re(NTo)Cl2(Oxine)PPh3	228	dark-green	75	761(768.4)	52.8(53.1)	4.9(5.0)	3.5(3.6)	8.6(9.2)
١٧	Re(NTo)Cl(Oxine)2	261	brown-green	58	602(615.0)	49.1(48.8)	3.2(3.4)	6.9(6.8)	5.5(5.8)
ΝI	Re(NTo)Cl ₂ (o-Ph-SalH)PPh ₃	221	brown-green	80	805(836.8)	54.7(54.5)	3.7(3.8)	3.3(3.3)	8.2(8.5)
VIII	Re ₂ (NTo) ₂ Cl ₄ (Sal ₂ en)(PPh ₃) ₂	246	green	40	1540(1515)	52.7(52.3)	3.9(3.8)	4.3(3.7)	9.0(9.4)
XI	cis-Re2(NTo)2Cl4(Sal2prop)(PPh3)2	227	dark-green	65		52.5(52.5)	3.8(4.0)	3.1(3.7)	8.7(9.3)
x	trans-Re2 (NTo)2 Cl4 (Sal2 prop)(PPh3)2	245	light-green	65	1570(1531.5)	51.8(52.5)	3.7(4.0)	3.3(3.7)	8.5(9.3)
XI	Re(NMe)Cl ₂ (Me-Sal)PPh ₃	218	red-brown	40	654(682.6)	46.2(47.5)	3.7(3.8)	4.0(4.1)	9.5(10.4)
ХІІ	Re(NMe)Cl ₂ (Ph-Sal)PPh ₃	244	red-brown	75	716.5(744.4)	51.6(51.6)	3.7(3.8)	3.7(3.7)	9.3(9.5)
XIII	Re(NMe)Cl ₂ (To-Sal)PPh ₃	220	red-brown	65	745(758.7)	52.2(52.2)	4.0(4.0)	3.6(3.7)	8.9(9.3)
XIV	cis-Re(NMe)Cl ₂ (Oxine)PPh ₃	240	red-brown	20	680(692.3)	47.2(48.6)	3.3(3.5)	3.8(4.0)	9.4(10.2)
X	trans-Re(NMe)Cl ₂ (Oxine)PPh ₃	229	red-brown	85	688(692.3)	47.4(48.6)	3.2(3.3)	3.9(4.0)	9.6(10.2)
XVI	Re(NMe)Cl(Oxine) ₂	217	light-brown	65	525(539.0)	41.8(42.3)	2.6(2.8)	7.7(7.8)	5.8(6.6)
ХVII	Re(NMe)Cl ₂ (o-Ph-SalH)PPh ₃	230	red-brown	80	757(760.7)	50.4(50.5)	3.6(3.7)	3.7(3.7)	9.2(9.3)
XVIII	Re2(NMe)2Cl4(Sal2prop)(PPh3)2	219	red-brown	30		47.4(47.9)	3.6(3.8)	3.9(4.1)	10.1(10.3)

^aM.ps. were determined in capillaries and are uncorrected.

122

TABLE I. General Properties and Elemental Analyses of the Complexes.

	Complex	(C=N)	(C-O)	(Re–Cl)	(O-H)
I	Re(NTo)Cl ₂ (Me-Sal)PPh ₃	1600s	1290s	280s	
II	Re(NTo)Cl ₂ (Ph-Sal)PPh ₃	1590s	1300s	290s	
III	Re(NTo)Cl ₂ (To-Sal)PPh ₃	1590s	1310s	295s	
IV	cis- Re(NTo)Cl ₂ (Oxine)PPh ₃		1270s, 1315s	285m, 320m	
v	trans-Re(NTo)Cl ₂ (Oxine)PPh ₃		1270s, 1315s	290s	
VI	Re(NTo)Cl(Oxine) ₂		1270s, 1315s	360s	
VII	Re(NTo)Cl ₂ (0-Ph-SalH)PPh ₃	1600s	1295s	285s	2220m
VIII	$Re_2(NTo)_2Cl_4(Sal_2en)(PPh_3)_2$	1615s	1300s	295s	
IX	cis-Re2(NTo)2Cl4(Sal2prop)(PPh3)2	1585s	1305s	290m, 310m	
x	trans-Re2(NTo)2Cl4(Sal2prop)(PPh3)2	1610s	1275m, 1300s	310m	
XI	Re(NMe)Cl ₂ (Me-Sal)PPh ₃	1600s	1600s	280m	
XII	Re(NMe)Cl ₂ (Ph-Sal)PPh ₃	1590s	1295s	295s	
XIII	Re(NMe)Cl ₂ (To-Sal)PPh ₃	1590s	1290s	290s	
XIV	cisRe(NMe)Cl ₂ (Oxine)PPh ₃		1270s, 1320s	315m, 285w	
XV	transRe(NMe)Cl ₂ (Oxine)PPh ₃		1270s, 1320s	295s	
XVI	Re(NMe)Cl(Oxine) ₂		1270s, 1315s	350s	
XVII	Re(NMe)Cl ₂ (o-Ph-SalH)PPh ₃	1600s	1295s	285s	2220m
XVIII	$Re_2(NMe)_2Cl_4(Sal_2prop)(PPh_3)_2$	1585s	1295s	285m, 305m	

TABLE II. Some Important I.r. Stretching Frequencies (cm⁻¹) of the Complexes.

the chemical behaviour of oxo- and organoimidorhenium(V) complexes, we have studied the reactivity of ReNRCl₃(PPh₃)₂ (R = CH₃, p-CH₃C₆H₄) towards the Schiff base ligands LH = N-methylsalicylideneimine (Me-SalH); N-phenylsalicylidenimine (Ph-SalH), N-p-tolylsalicylideneimine (To-SalH); 8-hydroxyquinoline (Oxine); and LH₂ = N,N'-ethylene-bis(salicylideneimine) (SalH)₂en; N,N'-propylene-bis(salicylideneimine) (SalH)₂ prop; and N-2-hydroxyphenylsalicylideneimine (o-Ph-SalH₂).

Results and Discussion

The complexes $Re(NR)Cl_3(PPh_3)_2$ (R = CH₃, p-CH₃C₆H₄) react with LH and LH₂ to give monosubstituted complexes Re(NR)Cl₂(L)PPh₃. With oxine bisubstituted complexes are also obtained. The N-methylsalicylideneimine derivatives are obtained in good yields in boiling PhH, while the N-phenyl-, N-tolyl- and N-2-hydroxy-salicylideneimine ones are obtained in toluene. With half N,N' propylenebis, cis isomers are formed in toluene at room temperature and trans isomers under reflux. With oxine in boiling PhH only monosubstituted trans-isomers are obtained, whereas in boiling toluene small amounts of cis-isomers and of bisubstituted products are also formed. Good yields of the latter products are obtained by using the tallium salt of the ligand.

The general properties and elemental analyses of the new complexes are collected in Table I. The

complexes are air stable, soluble in PhH, THF, dichloromethane, insoluble in pentane and slightly soluble in ethanol, acetone and diethylether.

The most significant i.r. bands are reported in Table II. The (C=N) bands for the Schiff bases are at about 1600 cm⁻¹, indicating chelation of the ligands. In the range of metal-chlorine vibrations the monosubstituted complexes show one band at about 300 cm⁻¹, suggesting that the halogens are in *trans* positions. For the ligands (SalH)₂prop and Oxine, *cis*-isomers are also obtained, as may be inferred by the presence of two Re-Cl bands centred at 300 cm⁻¹. The formation of the two bisubstituted oxine complexes Re(NR)Cl(Oxine)₂ is proved by the absence of the phosphine band at about 1090 cm⁻¹.

No value has been assigned to the Re=NR stretching frequency, owing to the difficult location of this band. Many authors suggest that most metal-imide vibrations fall in the range $1100-1300 \text{ cm}^{-1}$ [1]

The reaction of rhenium nitrene complexes containing substituted phosphines such as $Re(NR)Cl_3$ - $(PR'_3)_2$ ($PR'_3 = PMePh_2$, PMe_2Ph , PEt_2Ph and PEt_3) with a Schiff base gives no products. Likewise no phosphine substitution occurs between $Re(NR)Cl_2$ (Schiff base)PPh₃ and PR'₃. A useful route in order to prepare rhenium complexes with a Schiff base and PR'₃ is represented by the reaction of Re(NR)- $Cl_2(Sal)PPh_3$ (Sal = salicylaldehyde) with PR'₃ and then with mono-aryl or -alkylamine following the scheme [7]:

The higher reactivity towards PR'_3 of the sixmembered chelate ring of the salicylaldehyde compared with that of the analogous ring with the Schiff base may be ascribed to the fact that the aldehydic oxygen is less basic than is the aldiminic nitrogen.

However, the presence of a chelate ring strongly decreases the reactivity of organoimido- as well as of oxo-rhenium(V) complexes. In fact, the reaction of Re(NTo)Cl₃(PPh₃)₂ with O₂ in boiling toluene to give Re(ToNO)Cl₃(OPPh₃) [12] does not occur for Re(NTo)Cl₂(Schiff base)PPh₃. Similarly the substitution of the oxygen atom of the Re=O group with the organoimido (NTo) ligand occurs easily by reaction of ReOCl₃(PPh₃)₂ with CH₃C₆H₄NSO [12], while the corresponding oxo-complexes ReOCl₂(Schiff base)PPh₃ do not react.

A comparison of the rhenium(V) oxohalide compounds reveals a higher reactivity of $\text{ReOCl}_3(\text{PPh}_3)_2$ to give bisubstituted compounds, [6]. For Re(NR)- $\text{Cl}_3(\text{PPh}_3)_2$ only the bisubstituted Oxine derivatives are obtained. As far as the configuration is concerned, *trans*-Re(NR)Cl₂(Schiff base)PPh₃ isomers are prevalently formed, whereas the halogens are in *cis* positions in the corresponding oxo-complexes [6].

The proton N.M.R. data do not reveal any influence of the ligands on the methyl chemical shift in the arylorganoimido group.

In the methyl of alkyl derivatives, the resonance is shifted to lower field. In the starting compound Re(NCH₃)Cl₃(PPh₃)₂ the resonance is at δ 0.37 (CDCl₃, triplet, J_{PH} = 4 Hz), whereas the resonances in Re(NCH₃)Cl₂(Schiff base)PPh₃ occur near δ 1.7 (CDCl₃, doublet, J_{PH} = 4 Hz) and in Re(NCH₃)-Cl₂(Sal)PPh₃ (sal = salicylaldehyde) at δ 2.55 (CDCl₃, doublet, J_{PH} = 5 Hz) [7]. For these complexes the observed values of δ increase with increasing electronegativity, *i.e.* P < N < O. X-ray Structure of $ReCl_2(NC_6H_4CH_3)/(RN=CH-C_6-H_4O)PPh_3$ ($R = C_6H_5$, CH_3)

The overall molecular configurations of the two compounds are shown in Figs. 1 and 2 together with the adopted numbering scheme. Both structures are composed of closely packed molecules of $ReCl_2(NC_6H_4CH_3)$ monomeric $(RN=CH-C_6H_4O)PPh_3$ with $R = C_6H_5$ or CH_3 . Although they crystallize in different crystal systems with different packing schemes, the configurations of the two compounds are strikingly similar. In both molecules distortions from ideal octahedral configurations are basically determined by repulsions among the sterically bulky ligands, by a movement of the ligands cis to the arylimino group away from the N atom, and by geometrical constraints related to the nature of the bidentate ligand. The formal double Re-N(1) bond [mean 1.73 Å] agrees with 1.726(6) $ReCl_3(NC_6H_5)(PPh_3)_2 \cdot CH_2Cl_2$ Å observed in [8] and with 1.72(1) Å in ReCl₂(NC₆H₄CH₃)- $(CHOC_6H_4O)PPh_3$ [7], whereas the Re-N(2) distance [mean 2.14 Å] is in good agreement with previous values obtained for Re-N single bonds [9].

With reference to a value of 2.04 Å for a Re^V-O single bond derived from the sum of covalent radii [10] a bond order of about 1.16 Å, slightly larger than unity, should be attributed to the Re-O bond [1.98(1) and 1.97(1) Å respectively], probably because of its partial ionic character. The Re-P bond [2.443(4) and 2.446(2) Å] trans to Re-N(2) is, as expected, shorter (by ca. 0.05 Å) than found in a series of compounds with two phosphine ligands trans to one another [11]. A difference of the same order was observed in ReNCl₂(PMe₂Ph)₃ between Re-P trans to Re-Cl and the two trans Re-P bonds [5]. The Re-Cl bond distance [mean 2.418 Å] is normal and needs no comment. The C(32)-N and C-O bond distances [mean 1.30 and 1.34 Å] in the chelating ligand indicate partial double bond character and, by considering the relative shortness of the C(31)-C(32) distance in both compounds, a diffuse delocalization of electron density over the planar moiety of the ligand can be assumed. The C(33)-N(2) bond lengths [1.45 Å in the phenyl compound and 1.48(1) Åin the methyl compound] are normal for aromatic and paraffinic C-N bonds. On the contary, the $N-C_6H_4Me$ distance [1.39 Å in both complexes] is significantly shorter and seems to be characteristic for compounds of this type. In fact the same value was observed in $\text{ReCl}_3(\text{NC}_6\text{H}_5)(\text{PPh}_3)_2$. CH₂Cl₂ and in ReCl₂(NC₆H₄CH₃)(CHOC₆H₄O). PPh3, and very similar values also in ReCl3- $(NC_6H_4OCH_3)(PEt_2Ph)_2$ and in $ReCl_3(NC_6H_4 COCH_3)(PEt_2Ph)_2$ [11].

Fig. 1. Crystal structure of ReCl₂(NC₆H₄CH₃)(PhN=CH-C₆H₄O)(PPh₃) (I).

Experimental

X-Ray Data

The crystal and experimental data and structurerefinement parameters for $\text{ReCl}_2(\text{NC}_6\text{H}_4\text{CH}_3)(\text{PhN}=$ $\text{CH}-\text{C}_6\text{H}_4\text{O})\text{PPh}_3$ (I), and for $\text{ReCl}_2(\text{NC}_6\text{H}_4\text{CH}_3)$ -(MeN=CH--C₆H₄O)PPh₃ (II), are given in Table III. At convergence the shift on the refined parameters was less than 0.2 σ . At this point, difference Fourier syntheses were calculated for (I) and (II) to check the correctness of the overall structures. Both maps showed only some residuals around the positions of the Re atoms. Final atomic coordinates and thermal parameters are presented in Tables IV and V, and bond distances and angles are listed in Tables VI and VII.

Compounds

Solvents were purified and dried before use. The starting compounds $Re(p-CH_3C_6H_4N)Cl_3$ -(PPh₃)₂ and $Re(NCH_3)Cl_3(PPh_3)_2$ were prepared by the literature methods [12, 13]. Other materials were reagent grade. The syntheses were performed under nitrogen. Molecular weights were measured on a Knauer osmometer; i.r. and ¹H nm.r. spectra were recorded on Perkin-Elmer 577 and on 80-MHz Bruker spectrometers respectively.

Fig. 2. Crystal structure of ReCl₂(NC₆H₄CH₃)(MeN=CH-C₆H₄O)(PPh₃) (II).

TABLE III. Crystal and Intensity Data for ReCl ₂ (NC ₆ H ₄ CH ₃)(PhN=CH-C ₆ H ₄ O)(PPh ₃) (I) and F	$eCl_2(NC_6H_4CH_3)(MeN=CH-$
$C_6H_4O)(PPh_3)$ (II).	

Compound	(I): $C_{38}H_{32}Cl_2N_2OPRe$	(II): C ₃₃ H ₃₀ Cl ₂ N ₂ OPRe
FW	820	758
System	Monoclinic	Triclinic
Space group	P21/c	ΡĪ
Ζ	4	2
a (Å)	15.340(5)	13.457(5)
b (Å)	21.115(6)	11.795(5)
c (Å)	10.605(5)	10.997(5)
α (°)		112.16(5)
β (°)	91.36(5)	108.17(5)
γ (°)		86.36(5)
<i>V</i> (Å ³)	3431	1533
$D_x (\text{g cm}^{-3})$	1.59	1.64

(continued on facing page)

TABLE III. (continued)

Max. crystal size (mm)	0.2	0.2
Radiation	ΜοΚα	ΜοΚα
μ (cm ⁻¹)	42.0	40.3
Technique and geometry	Four-circle diffractometer (Philips PN 1100) with gr radiation; $\theta/2\theta$ scan mode; scan rate 2° min ⁻¹	aphite-monochromated
θ_{\max} (°)	25	25
Stability	no significant variation	no significant variation
Number of independent reflexions	5148	5397
Number of observed reflexions	3931	4891
Criterion for observed reflexions	$l > 3\sigma(l)$	$1 > 3\sigma(1)$
Corrections applied	Lp, absorption [16]	Lp, absorption [16]
Atomic scattering factors	Re: ref. 14	Re: ref. 14
	Cl, P, O, N, C: ref. 15.	Cl, P, O, N, C: ref. 15
Programs used	X-Ray, SHELX: ref. 17, 18	X-ray, SHELX: ref. 17, 18
Correction for anomalous dispersion (Re)	$\Delta f' = -1.598$	$\Delta f' \approx -1.598$
	$\Delta f'' = 7.232$	$\Delta f'' \approx 7.232$
Solution	Patterson and Fourier methods	Patterson and Fourier methods
Refinement method	Full-matrix least-squares	Full-matrix least-squares
Parameters refined	Scale factor, atomic coordinates, anisotropic temper Cl, P, N and isotropic temperature factors for C	ature factors for Re,
Number of reflexions per parameter	22.1	35.7*
Weighting scheme	W = 1	$W = 1/(\sigma^2(F) + 0.0192 F^2)$
R (obs.)	0.047	0.080

*For (II) the ring carbon atoms were refined as rigid bodies.

TABLE IV. Positional Parameters with Esd's for (I).

Atom	<u>x</u>	у	Z
Re	0.29972(4)	0.42656(3)	0.31273(6)
Cl(1)	0.2163(2)	0.4728(2)	0.1398(4)
Cl(2)	0.4068(2)	0.3874(2)	0.4649(4)
P	0.2659(2)	0.3192(2)	0.2406(4)
0	0.3969(6)	0.4219(5)	0.1942(10)
N(1)	0.2190(7)	0.4276(7)	0.4261(12)
N(2)	0.3514(7)	0.5188(6)	0.3558(12)
C(1)	0.2678(10)	0.2565(7)	0.3614(15)
C(2)	0.2825(12)	0.1942(9)	0.3283(19)
C(3)	0.2778(13)	0.1457(10)	0.4220(21)
C(4)	0.2584(12)	0.1608(9)	0.5452(19)
C(5)	0.2432(11)	0.2229(9)	0.5783(18)
C(6)	0.2491(10)	0.2711(8)	0.4876(16)
C(7)	0.1587(10)	0.3044(8)	0.1667(16)
C(8)	0.1440(13)	0.2505(9)	0.0918(20)
C(9)	0.0593(15)	0.2379(11)	0.0433(22)
C(10)	-0.0100(14)	0.2773(11)	0.0758(21)
C(11)	0.0036(12)	0.3313(9)	0.1479(19)
C(12)	0.0893(11)	0.3449(8)	0.1935(17)
C(13)	0.3469(10)	0.2952(8)	0.1224(16)
C(14)	0.3305(12)	0.3044(9)	-0.0053(19)
C(15)	0.3976(15)	0.2884(11)	-0.0913(23)

(continued overleaf)

TABLE IV. (continued)

Atom	x	y	Z
C(16)	0.4728(16)	0.2633(12)	-0.0433(24)
C(17)	0.4921(16)	0.2535(12)	0.0782(25)
C(18)	0.4263(12)	0.2698(10)	0.1687(19)
C(19)	0.1692(10)	0.4315(8)	0.5342(16)
C(20)	0.0806(17)	0.4333(14)	0.5235(26)
C(21)	0.0328(18)	0.4369(14)	0.6358(28)
C(22)	0.0721(14)	0.4398(10)	0.7499(21)
C(23)	0.5172(18)	0.0540(14)	0.3686(28)
C(24)	0.1603(17)	0.4436(13)	0.7571(26)
C(25)	0.2104(15)	0.4399(11)	0.6506(23)
C(26)	0.4705(10)	0.4546(7)	0.1759(16)
C(27)	0.5321(10)	0.4299(8)	0.0933(15)
C(28)	0.6049(11)	0.4655(8)	0.0657(17)
C(29)	0.6205(11)	0.5237(9)	0.1239(18)
C(30)	0.5630(10)	0.5469(8)	0.2079(17)
C(31)	0.4861(10)	0.5131(7)	0.2349(15)
C(32)	0.4262(10)	0.5426(8)	0.3189(16)
C(33)	0.3061(10)	0.5579(7)	0.4455(15)
C(34)	0.3501(11)	0.5773(9)	0.5576(17)
C(35)	0.6942(13)	0.3841(9)	0.3561(20)
C(36)	0.7795(12)	0.3643(9)	0.3823(19)
C(37)	0.8222(11)	0.3846(8)	0.4918(18)
C(38)	0.2198(10)	0.5767(8)	0.4204(16)

Thermal parameters $(\times 10^2)$ for (1) Anisotropic thermal parameters are in the form: $T = \exp[-2\pi^2(U_{11}h^2a^2 + U_{22}k^2b^2 + U_{33}l^2c^2 + U_{12}hkab + U_{13}hlac + U_{23}klbc + U_{23}klbc)]$

Atom	U ₁₁	U22	U ₃₃	U ₁₂	U ₁₃	U23
				0.0(2)	0.28(2)	0.15(2)
Re	1.98(3)	2.21(3)	2.99(4)	-0.2(3)	0.38(2)	-0.15(3)
Cl(1)	3.7(2)	3.2(2)	3.6(2)	-0.1(2)	-0.3(2)	0.4(2)
C1(2)	3.0(2)	4.0(2)	4.7(3)	0.2(2)	-0.9(2)	0.2(2)
Р	2.1(2)	2.1(2)	3.3(2)	-0.4(2)	0.5(2)	-0.2(2)
0	2.4(5)	3.1(6)	4.0(7)	-0.5(5)	1.1(5)	-0.5(6)
N(1)	2.2(6)	4.4(8)	2.3(7)	0.1(6)	0.8(5)	0.7(7)
N(2)	2.3(6)	3.1(7)	3.2(8)	0.05(6)	0.2(6)	-0.2(6)
Atom	U	Atom	U	Atom	U	
C(1)	2.9(4)	C(14)	4.9(5)	C(27)	3.3(7)	
C(2)	4.8(5)	C(15)	6.9(6)	C(28)	3.9(4)	
C(3)	5.7(5)	C(16)	7.6(7)	C(29)	4.4(4)	
C(4)	5.0(5)	C(17)	7.5(7)	C(30)	3.7(4)	
C(5)	4.5(4)	C(18)	5.2(5)	C(31)	2.9(4)	
C(6)	3.5(4)	C(19)	3.4(4)	C(32)	3.3(4)	
C(7)	3.4(4)	C(20)	8.7(8)	C(33)	3.0(4)	
C(8)	5.2(5)	C(21)	9.3(8)	C(34)	4.1(4)	
C(9)	6.7(6)	C(22)	5.9(6)	C(35)	5.3(5)	
C(10)	6.1(6)	C(23)	9.3(9)	C(36)	4.9(5)	
C(11)	5.1(5)	C(24)	8.5(8)	C(37)	4.3(4)	
C(12)	3.9(4)	C(25)	7.3(7)	C(38)	3.6(4)	
C(13)	3.4(4)	C(26)	29(4)	0(00)		

 $Re(NR)Cl_2(Me-Sal)PPh_3$ ($R = CH_3$, $p-CH_3C_6H_4$) A stirred suspension of $Re(CH_3C_6H_4N)Cl_3(PPh_3)_2$ (0.5 g, 0.54 mmol) or $Re(NCH_3)Cl_3(PPh_3)_2$ (0.5 g, 0.59 mmol) and Me-SalH (0.36 g, 2.7 mmol) was

refluxed in PhH (100 ml) for 2 h. The solution was concentrated to one third of its volume and a precipitate was obtained upon addition of EtOH. The solid was crystallized from CH₂Cl₂/EtOH.

Schiff Base Imido Complexes of Re(V)

TABLE V. Positional Parameters with Esd's for (II).

Atom	x	y	Z
Re	0.28569(2)	0.16495(3)	0.11500(3)
Cl(1)	0.2099(2)	0.0431(2)	0.1997(3)
Cl(2)	0.3966(2)	0.2637(2)	0.0415(3)
P	0.2202(2)	0.3539(2)	0.2482(2)
0	0.4067(5)	0.1978(6)	0.2836(7)
N(1)	0.1834(6)	0.1539(7)	-0.0295(7)
N(2)	0.3585(6)	0.0012(7)	0.0284(8)
C(1)	0.2865(6)	0.4114(5)	0.4361(7)
C(2)	0.2813(6)	0.3333(5)	0.5030(7)
C(3)	0.3270(6)	0.3714(5)	0.6457(7)
C(4)	0.3779(6)	0.4878(5)	0.7217(7)
C(5)	0.3830(6)	0.5659(5)	0.6549(7)
C(6)	0.3373(6)	0.5278(5)	0.5121(7)
C(7)	0.0830(5)	0.3417(5)	0.2394(6)
C(8)	0.0196(5)	0.2357(5)	0.1493(6)
C(9)	-0.0851(5)	0.2287(5)	0.1429(6)
C(10)	-0.1264(5)	0.3277(5)	0.2267(6)
C(11)	-0.0630(5)	0.4337(5)	0.3168(6)
C(12)	0.0417(5)	0.4407(5)	0.3232(6)
C(13)	0.2300(4)	0.4828(6)	0.1979(7)
C(14)	0.3291(4)	0.5264(6)	0.2137(7)
C(15)	0.3389(4)	0.6230(6)	0.1735(7)
C(16)	0.2496(4)	0.6759(6)	0.1175(7)
$\dot{\mathbf{C}(17)}$	0.1506(4)	0.6323(6)	0.1017(7)
C(18)	0.1408(4)	0.5358(6)	0.1419(7)
C(19)	0.1094(5)	0.1574(7)	-0.1488(8)
C(20)	0.1308(5)	0.2325(7)	-0.2109(8)
C(21)	0.0588(5)	0.2349(7)	-0.3325(8)
C(22)	-0.0347(5)	0.1621(7)	-0.3920(8)
C(23)	-0.1156(13)	0.1646(15)	-0.5266(18)
C(24)	-0.0561(5)	0.0870(7)	-0.3299(8)
C(25)	0.0160(5)	0.0846(7)	-0.2083(8)
C(26)	0.4753(5)	0.1243(4)	0.3282(6)
C(27)	0.5386(5)	0.1714(4)	0.4659(6)
C(28)	0.6113(5)	0.0985(4)	0.5184(6)
C(29)	0.6208(5)	-0.0214(4)	0.4333(6)
C(30)	0.5576(5)	-0.0685(4)	0.2956(6)
C(31)	0.4849(5)	0.0044(4)	0.2431(6)
C(32)	0.4299(7)	-0.0489(9)	0.0959(10)
C(33)	0.3172(8)	-0.0618(10)	-0.1234(11)

Thermal parameters $(\times 10^2)$ for (II)

Atom	<i>U</i> ₁₁	U22	U ₃₃	U ₁₂	U ₁₃	<i>U</i> ₂₃
Re	2.56(3)	2.56(3)	2.53(3)	0.45(2)	-0.08(2)	-0.07(2)
Cl(1)	4.2(1)	3.7(1)	4.1(1)	1.4(1)	0.7(1)	-0.3(1)
Cl(2)	4.3(1)	3.9(1)	4.7(1)	0.9(1)	1.5(1)	-0.4(1)
Р	3.2(1)	2.5(1)	2.7(1)	0.4(1)	0.0(1)	0.2(1)
0	4.0(4)	3.0(3)	3.7(4)	0.2(3)	0.2(3)	0.0(3)
N(1)	3.4(4)	2.9(4)	2.0(4)	-0.2(3)	0.0(3)	-0.3(3)
N(2)	3.6(4)	2.6(4)	2.5(4)	-0.3(3)	0.6(3)	0.0(3)
Atom	U	Atom	U	Atom	U	_
C(1)	3.5(2)	C(12)	5.3(2)	C(23)	8.9(4)	
C(2)	6.4(3)	C(13)	3.8(2)	C(24)	6.0(3)	

(continued overleaf)

TABLE	V .	(continued)
-------	------------	-------------

Atom	U	Atom	U	Atom	U	
C(3)	6.6(3)	C(14)	4.8(2)	C(25)	4.8(2)	
C(4)	6.4(3)	C(15)	5.4(2)	C(26)	3.7(2)	
C(5)	6.8(3)	C(16)	7.2(3)	C(27)	4.4(2)	
C(6)	5.3(2)	C(17)	7.9(4)	C(28)	5.7(3)	
C(7)	4.0(2)	C(18)	5.7(3)	C(29)	5.8(3)	
C(8)	4.3(2)	C(19)	4.2(2)	C(30)	4.9(2)	
C(9)	5.0(2)	C(20)	6.1(3)	C(31)	4.1(2)	
C(10)	5.4(2)	C(21)	7.6(4)	C(32)	3.8(2)	
C(11)	5.0(2)	C(22)	5.6(2)	C(33)	4.8(2)	

TABLE VI. Bond Distances (A) with Esd's Referred to the Last Significant Digit.

TABLE	VII.	Bond	Angles	(Deg)	with	Esd	'S	Referred	to	the
Last Sign	nifica	nt Dig	it.							

	(1)	(11)			
ReCl(1)	2.417(4)	2.401(3)			
Re-Cl(2)	2.421(4)	2.433(3)			
Re-P	2.443(4)	2.446(2)			
Re-O	1.98(1)	1.97(1)			
Re-N(1)	1.75(1)	1.71(1)			
Re-N(2)	2.15(1)	2.13(1)			
N(1)-C(19)	1.39(2)	1.39(1)			
C(22)-C(23)	1.54(4)	1.55(2)			
O-C(26)	1.34(2)	1.33(1)			
C(31)-C(32)	1.44(2)	1.45(1)			
C(32)-N(2)	1.32(2)	1.28(1)			
N(2)-C(33)	1.45(2)	1.48(1)			
P-C(1)	1.84(2)	1.83(1)			
P-C(7)	1.83(2)	1.84(1)			
P-C(14)	1.86(2)	1.83(1)			

For (I) the mean of the C--C bonds in the rings is 1.393 Å; for (II) the ring carbon atoms were refined as rigid bodies with a fixed C-C bond distance of 1.395 Å.

 $Re(NR)Cl_2(L)PPh_3$ ($R = CH_3$, $p-CH_3C_6H_4$; L =Ph-Sal, To-Sal, o-Ph-SalH)

A stirred suspension of $Re(CH_3C_6H_4N)Cl_3(PPh_3)_2$ (0.5 g, 0.54 mmol) or Re(NCH₃)Cl₃(PPh₃)₂ (0.5 g, 0.59 mmol) with an excess of the appropriate ligand (2.7 mmol) was refluxed in toluene (100 ml) for 2 h. The solution was then concentrated to one third of its volume and a precipitate was obtained upon addition of EtOH. The solid was crystallized from CH₂Cl₂/EtOH.

$Re(NR)Cl_2(Oxine)PPh_3 (R = CH_3, p-CH_3C_6H_4)$

 $Re(CH_3C_6H_4N)Cl_3(PPh_3)_2$ (0.5 g, 0.54 mmol) or $Re(NCH_3)Cl_3(PPh_3)_2$ (0.5 g, 0.59 mmol) and Oxine (0.39 g, 2.7 mmol) were allowed to react under the conditions described above to give the products. When the reaction was carried out in boiling toluene (6 h) small amounts of cis-isomer and bisubstituted product were also obtained.

	(1)	(II)
Cl(1)-Re-Cl(2)	169.2(1)	167.3(1)
P-Re-N(2)	169.1(3)	171.3(2)
O-Re-N(1)	175.5(5)	173.2(4)
Cl(1)-Re-P	91.8(1)	92.6(1)
Cl(1)-Re-O	86.1(3)	86.1(3)
Cl(1) - Re - N(1)	98.4(4)	99.4(3)
Cl(1)-Re-N(2)	88.9(3)	84.4(3)
Cl(2)-Re-P	91.6(1)	96.1(1)
Cl(2)-Re-O	84.1(3)	85.3(3)
Cl(2)-Re-N(1)	91.5(4)	89.8(3)
Cl(2) - Re - N(2)	85.8(3)	85.7(3)
P-ReO	85.0(3)	85.9(2)
P-Re-N(1)	94.5(5)	89.9(3)
O-Re-N(2)	84.3(4)	85.7(3)
N(1) - Re - N(2)	96.1(6)	98.6(3)
Re-N(1)-C(19)	168(1)	171(1)
Re-N(2)-C(32)	127(1)	126(1)
Re-N(2)-C(33)	118(1)	116(I)
C(32)-N(2)-C(33)	114(1)	118(1)
Re-O-C(26)	136(1)	132(1)
N(2)-C(32)-C(31)	126(1)	126(1)
Re-P-C(1)	117(1)	115(1)
Re-P-C(7)	118(1)	115(1)
Re-P-C(13)	110(1)	114(1)
C(1) - P - C(13)	106(1)	105(1)
C(7) - P - C(13)	106(1)	102(1)
C(1)-P-C(7)	100(1)	105(1)

 $Re(NR)Cl(Oxine)_2$ ($R = CH_3$, $p-CH_3C_6H_4$) A stirred suspension of $Re(CH_3C_6H_4N)Cl_3$ -(PPh₃)₂ (0.5 g, 0.54 mmol) or Re(NCH₃)Cl₃(PPh₃)₂ (0.5 g, 0.59 mmol) and OxineTl (0.94 g, 2.7 mmol) was refluxed in toluene (100 ml, 1 h). The solution was concentrated to one third of its volume and a precipitate was obtained upon addition of EtOH. The solid was crystallized from CH₂Cl₂/ EtOH.

Schiff Base Imido Complexes of Re(V)

$Re_2(NTo)_2Cl_4(Sal_2en)(PPh_3)_2$

Re(CH₃C₆H₄N)Cl₃(PPh₃)₂ (0.5 g, 0.54 mmol) and (SalH)₂en (0.72 g, 2.7 mmol) were refluxed in toluene (100 ml, 1 h). The solution was concentrated to one third of its volume and a precipitate was obtained upon addition of EtOH. The solid was crystallized from CH₂Cl₂/EtOH.

trans- and $cis-Re_2(NR)_2Cl_4(Sal_2prop)(PPh_3)_2$ (R = CH₃, p-CH₃C₆H₄)

 $Re(CH_3C_6H_4N)Cl_3(PPh_3)_2$ (0.5 g, 0.54 mmol) or $Re(NCH_3)Cl_3(PPh_3)_2$ (0.5 g, 0.59 mmol) and $(SalH)_2 prop$ (0.76 g, 2.7 mmol) were allowed to react under the conditions described above to give the *trans*-isomer. When the reaction was carried out at r.t. with a larger excess of ligand (5.00 mmol), the *cis*-isomer was obtained.

References

- 1 W. A. Nugent and B. L. Haymore, Coord. Chem. Rev., 31, 123 (1980).
- 2 R. Rossi, A. Duatti, L. Magon, U. Casellato, R. Graziani and L. Toniolo, J. Chem. Soc., Dalton Trans., 1949 (1982).
- 3 Work in progress.

- 4 G. Gilli, M. Sacerdoti, V. Bertolasi and R. Rossi, Acta Cryst., B38, 100 (1982).
- 5 E. Forsellini, U. Casellato, R. Graziani and L. Magon, Acta Cryst., B38, -081 (1982).
- 6 U. Mazzi, E. Roncari, R. Rossi, V. Bertolasi, O. Traverso and L. Magon, *Transition Met. Chem.*, 5, 289 (1980).
- 7 A. Marchi, R. Rossi, A. Duatti, L. Magon, U. Casellato and R. Graziani, *Transition Met. Chem.*, in press.
- 8 E. Forsellini, U. Casellato, R. Graziani, M. C. Carletti and L. Magon, *Acta Cryst.*, in press.
- 9 C. J. L. Lock and G. Turner, Acta Cryst., B11, 1764 (1975); B34, 923 (1978).
- 10 F. A. Cotton and S. J. Lippard, Inorg. Chem., 4, 1621 (1965).
- D. Bright and J. A. Ibers, *Inorg. Chem.*, 7, 1099 (1968); 8, 703 (1969);
 R. J. Doedens and J. A. Ibers, *Inorg. Chem.*, 6, 204

(1967).

- 12 L. La Monica and S. Cenini, Inorg. Chim. Acta, 29, 183 (1978).
- 13 J. Chatt, R. J. Dosser, F. King and G. J. Leigh, J. Chem. Soc., Dalton Trans., 2435 (1976).
- 14 'International Tables for X-ray Crystallography, Vol. 4, 2nd edn.', Kynoch Press, Birmingham, 1974.
- 15 D. T. Cromer and J. B. Mann, Acta Cryst., A24, 321 (1968).
- 16 A. C. T. North, D. C. Phillips and F. S. Mathews, Acta Cryst., A24, 351 (1968).
- 17 J. M. Stewart, F. A. Kundell and J. C. Baldwin, X-RAY System of Crystallographic Programs. Univ. of Maryland, 1972.
- 18 G. M. Sheldrick, SHELX, Program for Crystal Structure Determination, Univ. of Cambridge, 1975.