¹⁹⁹Hg NMR Correlations in Methylmercury(II) Complexes of Nucleic Acid Constituents and Their Analogs

A. R. NORRIS* and R. KUMAR

Department of Chemistry, Queen's University, Kingston, K7L 3N6, Canada

Received August 8, 1984

The known toxic effects of organomercury compounds are often attributed to the formation of mercury-sulfur bonds with sulfhydryl functions in aminoacids and proteins but may also be due, in part, to their interactions with nucleic acid constituents [1]. ¹⁹⁹Hg NMR (¹⁹⁹Hg has $I = \frac{1}{2}$, a natural abundance of 16.9%, and a sensitivity of 1.4%) has been used as a probe for various interactions of protein constituents with organomercury compounds in solution [2]. ¹⁹⁹Hg NMR has also been used to study the interactions of CH₃Hg(II) with substituted pyridines, bipyridyls, pyrazoles and related organic compounds [3]. To our knowledge, no report on the use of ¹⁹⁹Hg NMR as a probe for CH₃Hg(II)-nucleic acid interactions has yet appeared in the literature. As an extension of our ¹H and ¹³C NMR studies [4] of the complexes formed by the interactions of CH₃-Hg(II) and nucleic acid constituents, the ¹⁹⁹Hg NMR spectra of these complexes have been determined in $(CD_3)_2$ SO. Our results (Fig. 1) indicate that the ¹⁹⁹Hg chemical shifts are characteristic of both the nature of ligand centres (L) bonded to methylmercury(II) $(L-HgCH_3)$ and the ligand structural type. For ease of discussion one can divide the complexes in Fig. 1 into the categories I-VII as described below. Some of the general relationships which become apparent between ¹⁹⁹Hg chemical shifts and structure are pointed out.

I. $CH_3Hg(II)$ Bound to Sulfur of a Pyrimidine Moiety of a Purine Molecule (1a, 1b, 2a, 2b)

The ¹⁹⁹Hg shifts of the protonated cationic complexes 2a and 2b are found upfield compared to the ¹⁹⁹Hg chemical shifts for the corresponding neutral complexes 1a and 1b, and downfield from the values in the protonated cationic complexes 5 and 6 in which $CH_3Hg(II)$ is bound to an S-centre of imidazole or an imidazole moiety of purine (Group II). II. $CH_3Hg(II)$ Bound to S of Imidazole or an Imidazole Moiety of a Purine (3, 4, 5, 6)

Complexes 3 and 4 have similar chemical shifts, the small difference ($\Delta \delta = -6.7$ ppm) being presumably due to the presence of the pyrimidine moiety in 4. The ¹⁹⁹Hg chemical shifts of the 1:1 CH₃Hg(II) cationic complexes 5 and 6 are found upfield from the ¹⁹⁹Hg chemical shifts for the corresponding neutral complexes 3 and 4.

III. $CH_3Hg(II)$ Bound to S of Either the Pyrimidine or the Imidazole Ring of Purine with Simultaneous Binding of $CH_3Hg(II)$ to N-centres of Pyrimidine or Imidazole Moieties of Purine (7a, 7b, 8, 9)

In the 2:1 cationic CH₃Hg(II) complexes 7a and 7b, where two CH₃Hg(II) groups are bound simultaneously at S and N, the ¹⁹⁹Hg chemical shifts occur upfield from the values in the corresponding 1:1 cationic CH₃Hg(II) complexes 2a and 2b, and even further upfield from the corresponding neutral complexes 1a and 1b. The ¹⁹⁹Hg resonance in 8, in which CH₃Hg(II) groups are bound to N and S of the imidazole moiety of purine, occurs slightly upfield from that in 7b and slightly downfield from 7a in which CH₃Hg(II) groups are bound to both pyrimidine and imidazole moieties of purine.

IV. CH₃Hg(II) Bound to N of Imidazole or the Imidazole Moiety of Purine (10a, 10b, 11a, 11b, 12a, 12b)

In related imidazole-based complexes, 10a/10b, in which H in the first complex is replaced by the NO₂ group in the second, the ¹⁹⁹Hg resonance of the NO₂-containing species is upfield from that associated with the corresponding H-containing species. This is probably the result of decreased electron density in the ring due to the electron withdrawing effect of the NO₂ group. As previously (*e.g.* Groups I and III), the ¹⁹⁹Hg chemical shifts in this series of complexes become more negative on going from a neutral CH₃Hg(II)–N complex to the corresponding cationic CH₃Hg(II)–N⁺ complex.

V. CH₃Hg(II) Bound to N of Pyrimidine or the Pyrimidine Moiety of Purine (13a, 13b, 14a, 14b)

Complexes 13a and 13b, which differ only by a methyl group at C₅, have similar chemical shifts ($\Delta \delta = 10.9$ ppm). Also, complexes 14a and 14b, differing by an amino group at C₂, have similar ¹⁹⁹Hg shifts ($\Delta \delta = 12.6$ ppm).

VI. CH₃Hg(II) Groups Bound Simultaneously to N of Either Imidazole, or the Imidazole/Pyrimidine Moieties of a Purine (15a, 15b, 16a, 16b, 17)

In the 2:1 cationic complexes 15a and 15b, in which two CH₃Hg(II) moieties are bound simultaneously to the pyrimidine and imidazole moieties

0020-1693/84/\$3.00

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Fig. 1. Structures of the complexes listed under categories I–VII. The data in the parentheses refer to the ¹⁹⁹Hg chemical shifts (negative values, gixen in ppm relative to $(CH_3)_2$ Hg)) and the corresponding $\nu_{1/2}$ values in Hz (see text). Spectra were recorded on on a Bruker CXP-200 spectrometer using solutions of the complexes in DMSO-d₆ at a temperature of approximately 335 K.

of purine, the ¹⁹⁹Hg resonances occur upfield by 30.0 and 77.2 ppm, respectively, from the vaues in the corresponding 1:1 neutral complexes 14a and 14b. For complexes 16a and 16b, the ¹⁹⁹Hg resonances are also upfield from those of the corresponding neutral complexes 10a and 10b. The differences in ¹⁹⁹Hg chemical shift between the pairs 10a/11a, 10b/11b, 10a/16a and 10b/16b, show that, in this series of complexes, H⁺ addition is more effective than CH₃Hg⁺ addition in bringing about the upfield shift.

A noteworthy point with respect to those complexes in groups III–VI, in which there are two CH₃-Hg(II) moieties involved in binding (7a, 7b, 15a, 15b, 16a and 16b), is that a single averaged ¹⁹⁹Hg resonance is observed as a result of fast exchange, on the NMR time scale, of CH₃Hg(II) between different sites [5]. This exchange is reflected in a linewidth at half-height ($\nu_{1/2}$) in the ¹⁹⁹Hg resonance larger than that observed in the corresponding complex containing only one CH₃Hg(II) group (*e.g.* compare $\nu_{1/2}$ values for pairs 1a/7a, 1b/7b, 4/8, *etc.*, in Fig. 1).

In a number of complexes in which three CH_3 -Hg(II) groups are involved in binding to S and N or N sites only, different results are obtained. Thus, in

complex 9, where two nitrogens and one sulfur are involved in binding to CH₃Hg(II) groups, two separate ¹⁹⁹Hg resonances are observed; one occurring at -959.7 ppm ($\nu_{1/2} = 230$ Hz) and assigned to CH₃-Hg(II) bound to N₁, and a second resonance at -871.9 ppm ($\nu_{1/2} = 1130$ Hz) assigned to the CH₃-Hg(II) groups bound to N₇ and S₈. The second ¹⁹⁹Hg resonance in 9 has a value comparable to that associated with CH₃Hg(II) groups bound simultaneously to N₇ and S₈ in 8. In complex 17, two resonances are observed; one at -973.9 ppm ($\nu_{1/2} = 270$ Hz) due to the two CH₃Hg(II) groups rapidly exchanging between N₃ and N₇ sites, and the other at -928.3 ppm ($\nu_{1/2} = 140$ Hz) assignable to N₁-bound CH₃-Hg(II).

VII. CH₃Hg(II) Groups Bound Simultaneously to N and C of Imidazole and N of Pyrimidine Moieties of Purine (18, 19)

In complex 18, three separate ¹⁹⁹Hg resonances, at -969.8, -915.0 and -710.3 ppm, are observed. The resonances at -969.8 ($v_{1/2}$ = 315 Hz) and -915.0 ppm ($v_{1/2}$ = 100 Hz) are comparable to the values observed in 17. The resonance at -710.3 ppm is therefore assigned to C-bound CH₃Hg(II). In complex 19, two ¹⁹⁹Hg resonances have been observed, one at -719.2 ppm ($\nu_{1/2} = 62$ Hz) assignable to C-HgCH₃, and the other at -983.6 ppm ($\nu_{1/2} = 238$ Hz) assignable to N₁- and N₇-bound CH₃Hg(II). The latter resonance is comparable in frequency and width at half-height to the N₁, N₇-bound CH₃Hg(II) resonance in 15a.

It is seen that the least negative values of ¹⁹⁹Hg chemical shifts are found for complexes containing S-bonded CH₃Hg(II), while the most negative values of ¹⁹⁹Hg chemical shifts are found for complexes containing N-bonded CH₃Hg(II). Thus, in this series of complexes, the ¹⁹⁹Hg chemical shift of CH₃-Hg(II) bound to a ligand is a useful indicator of the nature of the ligand bound *trans* to the Hg–C bond. Comparison with ¹³C chemical shift data [4] shows that donor atoms wich give rise to substantial ¹⁹⁹Hg shifts also give rise to substantial ¹³C chemical shifts; thus there is a linear relationship between these quantities for the complexes described herein. This relationship presumably holds because a strongly bound ligand weakens the Hg–C bond [6].

Acknowledgement

Financial support of this research by the Natural Sciences and Engineering Research Council of Canada

via the Strategic Grants Program in Environmental Toxicology is gratefully acknowledged.

References

- 1 (a) D. W. Banner, A. C. Bloomer, G. A. Petsko, D. C. Phillips, C. I. Pogson and I. A. Wilson, *Nature*, 255, 609 (1975).
 - (b) J. Mulvihill, Science, 176, 132 (1972).
 - (c) A. Curley, V. A. Sedlak, E. F. Girling, R. E. Hawk, W. F. Barthel, P. E. Pierce and W. H. Likosky, *Science*, 172, 65 (1971).
- (d) C. A. Bache, W. H. Gutenmann and D. J. Lisk, *Science*, 172, 951 (1972).
- 2 (a) D. A. Vidusek, M. F. Roberts and G. Bodenhausen, J. Am. Chem. Soc., 104, 5452 (1982).
 (b) J. L. Sudmeier and T. G. Perkins, J. Am. Chem. Soc., 99, 7732 (1977).
- 3 A. J. Canty, P. Barron and P. C. Healy, J. Organomet. Chem., 179, 447 (1979) and references therein.
- 4 (a) E. Buncel, B. K. Hunter, R. Kumar and A. R. Norris, J. Inorg. Biochem., 20, 171 (1984).
 (b) A. R. Norris, R. Kumar, E. Buncel and A. L. Beauchamp, J. Inorg. Biochem., 20 (1984) and references therein.
- 5 M. F. Roberts, D. A. Vidusek and G. Bodenhausen, FEBS Lett., 117, 311 (1980) and references therein.
- 6 H. F. Henneike, J. Am. Chem. Soc., 94, 5945 (1972).