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Introduction 

Mixed ligand complexes attract much attention 
[2, 31 due to their roles in natural systems. To mimic 
and to improve our understanding of the selectivity 
observed in biological systems we have studied [l] 
the stability of ternary M(Nta)(A) complexes, where 
Mz+ = Co’+, Ni2+, Cu2+ or Zn’+, Nta3- = nitrilotriace- 
tate and A = pyridine, imidazole, NH3, CH3COO- 
or HPOi-. These monodentate ligands are the 
simplest models for the corresponding ligating groups 
often occurring in nature; ‘pyridine’-nitrogens are 
found e.g., in pyrimidine and purine derivatives. The 
most fascinating aspect of this study [l] is that 
pyridine and imidazole form ternary complexes 
which are more stable than the corresponding binary 
ones, i.e. for imidazole (Im) and the mentioned M2+ 
AlogKM = logK$$kImj - log Kghj = to.02 to 
+0.25; these values are significantly larger than 
expected on a statistical basis: Alog K+,h = -0.5 
[l] . This increased stability has been attributed to 
the r-accepting properties of imidazole [4] in accord- 
ance with related observations [3, 51. In general, 
such enhanced stabilities are observed in combina- 
tions of a heteroaromatic N base and an O-donor such 
as a carboxylate, phenolate or phosphate. 

To learn whether this enhanced thermodynamic 
stability is due to an increased rate of formation, 
or a reduced rate of dissociation or a combination of 
both we have now studied the kinetic properties 
of the Ni(Nta)-/imidazole system. Certainly, Ni2+ 
seems of minor biological importance [6, 71, com- 
pared e.g. with Zn2+, but it is especially suitable for 
kinetic studies [8], because data are available for 
comparisons [8- 141. Kinetic studies with the aim to 
evaluate the reasons for the mentioned enhanced 
stability of mixed ligand complexes are still very 
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scarce [15-l 81 and no general conclusions can so 
far be drawn. 

Experimental 

The chemicals were the same as used previously 
[l] . The kinetics of complex formation between 
Ni(Nta)- and lmidazole were studied at 563 nm using 
a Durrum D 150 T-jump spectrophotometer, inter- 
faced with a Hewlett-Packard HP 9820 computer 
through a Datalab 901 transient recorder [ 191. 

All solutions contained Ni2+ and Nta3- in a 1:l 
ratio (5 X 10m3 to 2.6 X 10m2 M); the hnidazole 
concentration was varied from 2.6 X lop3 to 2.6 X 
10V2 M and the pH from 5.0 to 5.8 (I = 0.1 M, 
KN03). The release of protons during the complexa- 
tion reaction was followed by 5 X 10m5 M methyl 
red, present in all solutions. The desired pH was 
adjusted to ?O.Ol pH-units with small amounts of 
HN03 or KOH, and just before the T-jump measure- 
ment the solutions were filtered through Millipore 
filters and degassed. The temperature of the experi- 
ments was 25 + 0.05 “C. 

All solutions containing Ni2+, Nta3- and imidazole 
showed only a single relaxation effect. Blank tests 
with solutions containing only Ni2+/Nta3- or imida- 
zole gave no relaxation signal in the time range of the 
instrument. The experimental points were fitted to 
a single exponential function, from which the relaxa- 
tion time 7 was obtained. The 7 values used for the 
final calculation are the mean of at least 5 measure- 
ments with a maximum relative error of +5%. 

Large ratios of [Ni(Nta)l /[Im] and [H(Im)‘] / 
[Im] were used throughout to assure that only the 
mono-imidazole complex formed. 

Results and Discussion 

Complex formation between imidazole and 
Ni(Nta)- was studied in the pH range 5 to 5.8, where 
imidazole is mainly present as H(Im)‘. There are 
reports [ 13, 141 that H(Im)+ may directly react 
with Niz at a rate 8 to 25 times smaller than that 
of Im itself. As Ni(Nta)- carries a negative charge the 
reaction with H(Im)’ might become even more 
important, therefore reactions (1) and (2) were 
considered. 

Ni(Nta)- t l-2 Ni(Nta)(Im)- (1) 

Ni(Nta)- + H(lm)’ 2 Ni(Nta)(Im)- + H’ (2) 
2 
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TABLE 1. Rate Constants for the Complexation of Ni2+ and Ni(Nta)- with Imidazole and Ammonia in Aqueous Solution at 
25 “C. 

a 
Im 
k+l (M-r s-’ ) 

NH3 
k+r (M-l s-’ ) 

Im 
k-t (s-r) 

NH3 
k-r (s-t) 

Ni2+ 

Ni(N ta)- 

3.2 x lo3 [13]’ 

5 x lo3 [9]b 

6.4 x lo3 [141a 

av.:4.9 X 10’ 

5.7 x lo4 [&I 

2.8 x lo3 [ll]d 

4.3 x lo3 [lo]* 

4.5 x lo3 [121e 

3.9 x lo3 4.gf 7.1f 

4.6 x lo3 [IlId 54.4f 13.3f 

aI = 0.1. bI = 0.15. %ris work; the error limits are 20.1 X 104; I = 0.1. dI = 0.25. ? = 1.0. ‘Calculated from the 
listed values of k+r and the stability constants given in eqns. (7) and (8). 

I , I 
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Fig. 1. Plot of (r*B)-l versus A/B for the Ni(Nta)-/imida- 
zole system. According to eqn. (6) the ‘best’ straight line 
was calculated using the least-squares procedure: (rB)-1 = 
(57.000 * l.OOO)*(A/B) + (-73 f 33). The standard devia- 
tion of the individual (rB)-’ values is given by the length of 
the bars. 

These reactions are coupled to the more rapid pro- 
cesses (3) and (4), where H(Ind) is the acidic form of 
the indicator methyl red. 

H(Im)’ =+ H’ + Im (3) 

H(Ind) + H’ + Ind- (4) 

The constants for eqns. (I), (3, and (4) are 
K;$$&) = 1.05 X lo3 M-l, Krrtij = 9.12 X 
10-s M [l] , and Kitid, = 1 X lo-’ M [20] , respec- 
tively. 

By standard techniques [15, 211 one obtains for 
the relaxation times eqn. (5), 

l/r = k+l*A + k+2*B (5) 

which corresponds in its rearranged form (6) to the 
equation of a straight line. 

(r*B)-1 = k+r*(A/B) + k+z (6) 

In eqns. (5) and (6) are 

A = [Ni(Nta)-] /(l + CY) + [Im] + l/Kzggk,, 

B = cr[Ni(Nta)-] /(l + a) + [H(Im)‘] 

0 = o(&nd, + W+l )/(K&Ind) + P’l + b-1 > 

The values of A and B were calculated for each pH 
and for the total reactant concentrations used. A 
plot of (r*B)-l versus A/B results, as expected 
according to eqn. (6), in a straight line which has 
k+l as slope and k+? as intercept (cf: Fig. 1). The 
slope equals (5.7 + 0.1) X lo4 W’ s-’ and the 
intercept -73 + 33 AP s-l, which means that 
k +2 r 0; hence, under the experimental conditions 
employed in this study the protonated form H(Im)’ 
is not reactive towards Ni(Nta)-. 

The rate constants of equilibrium (1) are given 
in Table I together with related data [9-141. The 
thermodynamic results [l] should also be recalled: 

= 3.02 - 3.00 = to.02 (7) 

AlogKNimq = l~gK~i~~~~> - log Kimn,) = 

= 2.54 - 2.74 = -0.20 (8) 

The rate constants for ligand substitution in NiiG 
with NH3 and imidazole are determined by the sol- 
vent exchange rate [8]. Indeed, the corresponding 
rate constants are similar (Table I) and the slightly 
larger stability 
Ni(NH3)2+, 

of Ni(Im)‘+, compared with 
is the result of a slightly enhanced forma- 

tion and a somewhat reduced dissociation rate. How- 
ever, both constants k+l and k_l for Ni(Nta)(Im)- 
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are more than lo-fold enhanced*, if compared to the 
values of Ni(Im)2+; hence AlOgK,im r 0 (eqn. 7). 
The corresponding comparison with the NHa systems 
reveals that here the differences are much smaller. 
Therefore the rates of the two ternary systems are 
discussed more in detail: 

The substitution rate of Ni(Nta);;, forimidazole 
is about 12 times faster than for NH3 (Table I), 
while the dissociation rate is increased only by a 
factor of about 4. The formation rate constant 
k+r is usually attributed to the product Kos*ksorv, 
where K, is the stability constant and k-r, the sol- 
vent exchange rate of the outer-sphere complex 
[S] . As one may assume that brv is similar for both 
substitutions, i.e. with NH3 and Im, the higher value 
of k+r for Im appears to reflect a higher stability of 
the outer-sphere complex. How this could result is 
not clear: it might be that Im is favored for a certain 
hydrogen bond, or that a hydrophobic interaction 
between ethylene groups of the coordinated Nta3- 
and the aromatic system of Im occurs. Such hydro- 
phobic interactions in ternary complexes are known 
[22] and the related stacking interactions [3] have 
been used to explain enhanced formation rates [8, 
231. This latter explanation is appealing: (i) it dis- 
favors NH3 and (ii) it would allow to rationalize also 
the enhanced stability of M(Nta)(pyridine)-. On the 
other hand one must admit that this explanation can- 
not universally hold for all ternary systems showing 
an enhanced stability and containing a hetero- 
aromatic N base and an O-donor [3-S], because, 
e.g., ternary M(2,2’-bipyridyl)(HPO,) complexes have 
also positive values for A log K1, [24], and for these 
no hydrophobic interactions can be assumed. 

To conclude, the relatively large stability of 
Ni(Nta)(Im)-, compared with Ni(Nta)(NH3)-, is 
mainly due to an enhanced formation rate, but it 
remains to be seen if this holds also for the corres- 
ponding complexes of the other metal ions. 
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