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The hydroxamate function is the active site of 
many siderophores [ 1, 21. Since iron(II1) is bound 
much more strongly than iron(I1) by this function, it 
is speculated that reduction may precede release from 
hydroxamate siderochromes [l] . Hence the current 
interest [3, 41 in redox properties of such species 
and model compounds. We report here the first 
systematic study of substituent effects on redox 
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potentials of a whole group of siderochrome models 
of type 1. The red to brown crystalline complexes 
(Table I) were obtained by reacting hydroxamic acids 
with iron(II1) chloride or tris(acetylacetonato)iron- 
(III). These were characterised by elemental analysis, 
IR and UV spectra and magnetic moment data &rf, 
5.85-5.99 BM). The complexes If-lh, lj, lk, lm, 
are new [3,5]. 

Cyclic voltammetry of 1 was generally performed 
at hanging mercury drop electrode (HMDE) in 
acetonitrile (for R’ = H complex dimethylformamide 
was used due to solubility reasons) with tetraethylam- 
monium perchlorate (TEAP) as the supporting elec- 
trolyte. Representative voltammograms obtained with 
Princeton Applied Research 370-4 Electrochemistry 
System [6] are in Fig. 1. Relevent data are in Table I. 
Meaning of symbols are: E$s, formal potential; 
Epc(Epa), cathodic (anodic) peak potential; AE,, 
peak-to-peak separation; ipc(ipa), cathodic (anodic) 
peak currents; SCE, saturated calomel electrode. The 
Hammett constant u (para substituent) has values 
[7]: OH, -0.37; OMe, -0.27; Me, ,0.17; H, 0.00; 
Cl, to.23 and NO*, t0.78. 
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Fig. 1. Cyclic voltammograms of three complexes (concentra- 
tion - low3 M; scan rate 100 mV s-l) in acetonitrile (0.1 U 
TEAP); for clarity only a part of the scan is shown in each 
case. 

TABLE I. Cyclic voltammetric Data.alb 

NO X R’ -Epe (V) E, (mV) -E&a (V) 

la -NO2 H 0.925 - - 

lb -Cl H 0.995 - _ 

Ic -H H 1.020 _ _ 

Id -Me H 1.060 _ _ 

le -0Me H 1.105 _ - 

If -OH H 1.105 - - 

k -NO2 Me 0.845 65 0.812 
Ih -Cl Me 0.950 65 0.917 
Ii Me 
lj Iie Me 

1.010 70 0.975 
1.055 15 1.017 

Ik -0Me Me 1.060 65 1.027 
11 -NO2 Ph 0.800 70 0.765 
Im -Cl Ph 0.905 65 0.872 
In -H Ph 0.946 68 0.912 
IO -Me Ph 0.968 80 0.928 

1P -0Me Ph 0.985 65 0.952 

aFor complexes la-If solvent is dimethylformamide (0.1 M 
in TEAP) and for others it is acetonitrile (0.1 M in TEAP); 
reference electrode, SCE; temperature 298 K. b Measure- 
ments were made in the scan rate rang SO-500 rnVs_l; the 
reported date corresponds to 100 mV s-l. 

All complexes except those with R’ = H (see 
below) display a cyclic response having i,/i,, = 1 in 
the range 0.7 to 1.1 V with AE, of 60-80 mV. The 
presence of an exactly or nearly reversible one- 
electron couple (1) is indicated. 
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Addition of excess 2,2’-bipyridyl (good affinity for 
iron(II)) to the electrochemical cell does not effect ._ 
the voltammogram in any way. Evidently 2, which is 
the anionic iron(I1) analogue of I, does not release 
the metal ion immediately on formation even in the 
presence of 2,2’-bipyridyl. In fact colourless solutions 
of 2 can be produced coulometrically although their 
isolation in the pure state remains to be achieved. 

The E& values (Table I) calculated as the average 
of En, and En, are sensitive to both X and R’. For a 
given R’, greater the electron withdrawing power of 
the substituent X, higher is the I&,. In fact E&s 
correlates linearly with 30 (the factor 3 appears since 
I is a tris-complex) of X (Fig. 2). The R’ = Me and 
R’ = Ph lines are nearly parallel but the former is 
placed above the latter-reflecting the systematically 
higher electron donating power of Me. The E&s - 
30 linearity can be expressed by eq. (2) where AE$s 
is the shift of E&s from the standard complex (X = 
H) and p is the reaction constant [8]. 

J%J* = 3OP (2) 
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Fig. 2. Linear E$aa - 30 plots; the solid lines are least square 
fitted. 

Experimental p values are R’ = Me, 0.07 and R’ = Ph, 
0.06 V. The value of p depends largely on the number 
of bonds (t) separating the para substituent X from 
the metal. In I we have t = 7. While example oft = 6 
@ > 0.1 V) are relatively common [9, lo] , cases with 

t = 7 are rare and the present work probably con- 
stitutes the most extensive study done to date on 
t = 7 [lo]. In certain triazene-l-oxide iron(II1) com- 
plexes whose t can be made either 6 or 7, values are: 
t = 6,0.14 V and t = 7,0.08 V [9]. 

In R’ = H complexes the anodic response is 
systematically absent. The origin of this behaviour 
which has been reported earlier [4] for the complex 
lc in acetone is not clear. In the absence of reliable 
I$& values, the En, - 30 correlation was tried here. 
An excellent linear relationship with p = 0.05 V 
resulted. 
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