Polynuclear CS₂ Palladium Derivatives

R. USÓN, J. FORNIÉS and M. A. USÓN

Department of Inorganic Chemistry, University of Saragossa, Saragossa, Spain

Received August 25, 1983

Compounds of empirical formula MLCS₂ (L = tertiary phosphine) have been known ever since the synthesis of the first carbon disulphide-transition metal complexes [1]. So far, such compounds have been reported for M = Ni [1-4] and M = Pt [5]. Herein we describe the preparation of the first palladium complexes of this stoichiometry, obtained by phosphine abstraction from $PdL_2(\eta^2-CS_2)$ precursors.

Addition of an equivalent amount of $[Pd(OCMe_2)-bipy(C_6F_5)]ClO_4$ to a solution of $PdL_2(\eta^2-CS_2)$ in Me₂CO/CS₂ results in the precipitation (eqn. 1) of yellow solids of the general formula 'PdLCS₂', (L = PPh₃, I, 66%; L = P(p-Tol)₃, II, 24%).

$$PdL_{2}(\eta^{2}-CS_{2}) + [Pd(OCMe_{2})bipy(C_{6}F_{5})]ClO_{4}$$
(1)
$$\xrightarrow{Me_{2}CO/CS_{2}} 'PdLCS_{2}' + [PdLbipv(C_{6}F_{5})]ClO_{4}$$

When L = PCy₃, the tendency to form the betaine $Cy_3P^*CS_2^-$ offers an alternative route, since reaction (eqn. 2) of the η^2 -CS₂ complex with an excess of carbon disulphide yields 'Pd(PCy₃)CS₂' as a yellow powder (III, 90%).

$$Pd(PCy_3)_2(\eta^2 \cdot CS_2) + CS_2 \xrightarrow{Me_2CO}$$

$$'Pd(PCy_3)CS_2' + Cy_2PCS_2 \qquad (2)$$

Although the three complexes precipitate as acetone solvates, this solvent can be removed by gently heating $(50^\circ, 24 \text{ hr})$ and their elemental analyses (Table I) are then in good agreement with the expected ones. These compounds are sparingly soluble in carbon disulphide; insoluble in ethanol, ether,

carbon disulphide; insoluble in ethanol, ether, acetone; and decompose in benzene, chloroform, dichloromethane giving a black deposit of metallic palladium. These solubility properties preclude molecular weight determinations and growth of crystals suitable for a structural study by X-ray diffraction. Therefore, besides the analytical data, only spectroscopic (i.r. and ³¹P n.m.r.) information is available.

³¹P n.m.r. spectra of I and III show a single peak, which requires all phosphines to be equivalent. Some more information can be obtained from the i.r. spectra, which show several bands due to the phosphine ligand (I: 1435vs, 1095vs, 1025m, 995m, 750sh s, 745vs, 705s, 690vs, 520vs, 500vs; II: 1715m, 1600m, 1515vs, 1510sh s, 1495vs, 1390m, 1305m, 1220m, 1185m, 1100vs, 1020m, 805vs, 710s, 705sh s, 645s, 640sh s, 630s, 615s, 515vs, 505vs; III: 1300m, 1265m, 1175s, 1100vs, 1000s, 915m, 895m, 880m, 850s, 845s, 740s, 705vs, 530m, 515s, 490m), being remarkable that complex I presents only two bands in the 500–550 cm⁻¹ region, which excludes the possibility of two triphenylphosphine molecules being co-ordinated to any single palladium atom [6].

Compounds I–III also show several absorptions in the 1100–1200 cm⁻¹ region, characteristic of ν (C=S) stretching (see Table I).

The known propensity of palladium(II) to be fourcoordinate suggests our compounds to be polynuclear species with CS_2 groups bridging metallic centres. A number of structures have been proposed for a CS_2 bridge, only a few of which have been ascertained by means of diffraction techniques.

TABLE I.	Analytical	and Spec	troscopic	Data.
----------	------------	----------	-----------	-------

Compound		Found (calc.)		δ(³¹ P)	i.r. $(1100 - 1200 \text{ cm}^{-1} \text{ region})$	
		%C	%Н			
[[Pd(PPh ₃)CS ₂] _x	51.12	3.54	24.1	1115br vs, 1135br vs, 1155s	
n		(51.30)	(3.40)		1115.00 1120.00 11550	
II [rur(p-	$[rar(p-101)_3CS_2]_x$	(54.27)	(4,35)	-	111398, 113098, 11338	
111	$[Pd(PCy_3)CS_2]_x$	48.88	7.37	37.3	1120vs, 1140vs, 1150br s	
		(49.29)	(7.18)			

0020-1693/83/\$3.00

© Elsevier Sequoia/Printed in Switzerland

Coordination as a metallodithiocarboxylato(S,S)metal [7] (A) has been found [8–10] to exhibit two characteristic absorptions in the 920–940 and 870–880 cm⁻¹ regions, assignable respectively to the symmetric or assymmetric stretching modes of the CS₂ moiety.

Coordination of the exocyclic sulphur atom of a η^2 -CS₂ complex to a second metal centre leads [11-13] to dinuclear complexes (B) which show a single absorption in the 1100-1200 cm⁻¹ region, at a frequency close to that found in the mononuclear starting material.

Another coordination mode (C) has been found [12-14] for $[(triphos)Co(\mu-CS_2)Co(triphos)]^{2+}$, which does not show 'i.r. bands attributable to C=S stretching modes'.

Only recently [4], the structure of [Ni(PPh₃)-CS₂]₂ has been elucidated, in which two nickel atoms are bridged through the *exo* sulphur atom of two η^2 -CS₂ ligands (and not through the *endo* sulphur atoms as had been proposed earlier).

Though the i.r. absorptions due to triphenylphosphine in I and $[Ni(PPh_3)CS_2]_2$ coincide, both spectra differ very much in the 1100–1200 cm⁻¹ region since the latter only presents one band at 1125 cm⁻¹ (s).

Therefore, our compounds must have a different structure, and we think them to be polymer species of type (E) or (F).

We think it noteworthy that compounds of this type 'PdLCS₂' could only be isolated for $L = PPh_3$, P(*p*-Tol)₃, PCy₃, and not for other tertiary phosphines (PEt₃, PBu₃, PEtPh₂, P(*p*-C₆H₄OMe)₃, P(*p*-C₆H₄Cl)₃), in agreement with the results found for nickel [3].

Besides, compounds I and III react with stoichiometric amounts of the respective phosphines regenerating the η^2 -CS₂ starting complex, (as identified by their i.r. spectra), whereas III does not react with either PPh₃ or PCy₃.

References

- 1 M. C. Baird and G. Wilkinson, J. Chem. Soc. A, 865 (1967).
- 2 E. Uhlig and W. Poppitz, Z. Chem., 19, 191 (1979).
- 3 M. G. Mason, P. N. Swepston and J. A. Ibers, *Inorg. Chem.*, 22, 411 (1983).
- 4 C. Bianchini, C. A. Ghilardi, A. Meli, S. Midollini and A. Orlandini, *Chem. Commun.*, 753 (1983).
- 5 D. H. Farrar, R. Taylor and A. Walker, *Inorg. Chim.* Acta, 64, L195 (1982).
- 6 S. H. Mastin, Inorg. Chem., 13, 1003 (1974).
- 7 J. M. Lisy, E. D. Dobrzynski, R. J. Angelici and J. Clardy, J. Am. Chem. Soc., 97, 656 (1975).
- 8 W. P. Fehlhammer and H. Stolzenberg, Inorg. Chim. Acta, 44, L151 (1980).
- 9 W. P. Fehlhammer, A. Mayr and H. Stolzenberg, Ang. Chem. Int. Ed. Eng., 18, 626 (1976).
 10 H. Stolzenberg, W. P. Fehlhammer and P. Dixneuf, J.
- 10 H. Stolzenberg, W. P. Fehlhammer and P. Dixneuf, J. Organomet. Chem., 246, 105 (1983).
- 11 T. G. Southern, U. Ochmichen, J. Y. LeMarouille, H. LeBozec, D. Grandjean and P. Dixneuf, *Inorg. Chem.*, 19, 2976 (1980).
- 12 C. Bianchini, C. Mealli, A. Meli, A. Orlandini and L. Sacconi, *Inorg. Chem.*, 19, 2968 (1980).
- 13 J. Amaudrut, J. Sala-Pala, J. E. Guerchais, R. Mercier and J. Douglade, J. Organomet. Chem., 235, 301 (1982).
- 14 C. Bianchini, C. Mealli, A. Meli, A. Orlandini and L. Sacconi, Ang. Chem. Int. Ed. Eng., 18, 673 (1979).