Sulphur-Substituted Alkylpalladium Compounds. Part 2." Reactions of Organothiomethyl-palladium Complexes with Proton Acids

HELEN D. McPHERSON and JAMES L. WARDELL**

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen, AB9 2UE, U.K.

Received April 28,1983

Carbon-palladium bond cleavage occurs on reaction of $[(PPh_2R)_2Pd(CH_2SR')X]/R'$ *, R = Me or Ph, X = Cl, Br, I or SCN) with excess* CF_3CO_2H *or HCl at ambient temperature in CHCI, solution to give* $[(PPh_2R)_2PdX(A)]$ *(A = CF₃CO₂ or Cl) and MeSR'. With less CF₃CO₂H, shorter reaction times, or with the weaker acid. CH₃CO₂H, reversible protonation of the complexes occurs. Complexes,* $f(PPh_3)Pd(CH_2SMe)X$ $(X = Cl, Br \text{ or } I)$ containing *bidentate CH,SMe' ligands, react more slowly with proton acids (HA) to give halide bridged [(PPh,*)- $PdX(A)|_2$ (X = Cl, Br or I; A = Cl or CF_3CO_2) and $Me₂ S$.

Introduction

Organothiomethyl-palladium complexes are known in which the $R'SCH₂$ ligand is monodentate, as in $[(PPh_2R)_2Pd(CH_2SR')X]$ $(R = Me$ or $Ph; R' =$ Me or Ph; $X = Cl$, Br, I, or SCN), e.g. (I) or bidentate as in $[(PPh_3)Pd(CH_2SMe)X]$ $(X = Cl, Br, or I) [1, 2],$ e.g. (II) . Reactions with halogens [1] and some Pd-C insertion reactions [2] of these complexes have been

reported. Cleavage of Pd-C sigma bonds in a number of $[L_2PdR_2]$ and $[L_2PdRX]$ compounds by proton acids has variously been shown [3]. We now report details of a protonolysis study of $R'SCH_2Pd$ complexes which indicate a significant role for the donor

*Part 1. Ref. [l].

TABLE I. Proton Chemical Shifts, δ CH₂, for Interactions of $[(PPh₃)₂Pd(CH₂SR)Cl]$ and $CH₃CO₂H$ in CDCl₃ Solution.

Equivalents of $CH3CO2H$:	δ CH ₂		
	0	1.0	6.0
$[(Ph_3P)_2Pd(CH_2SPh)Cl]$	2.42	3.04	3.49
$[(Ph_3P)_2Pd(CH_2SC_6H_4Me-p)Cl]$	2.78	3.11	

centre, sulphur; a preliminary communication has been published [4].

Experimental

The organopalladium compounds $[(PPh₂R)₂$ - $Pd(CH_2SR')X$ (R,R' = Me or Ph; X = Cl, Br, I or SCN) and $[(PPh₃)Pd(CH₂SMe)X]$ $(X = Cl, Br \text{ or } I)$, were obtained as described previously [1]. Deoxygenated solvents and nitrogen atmospheres were generally used.

Acetic acid, trifluoroacetic acid and hydrogen chloride were the purest grades commercially available, as were other reagents used in this study.

Reactions with Carboxylic Acids

To a solution of the organopalladium compound in CDC13 (0.18-0.25 M), was added, *via* a syringe, known amounts of the carboxylic acid. Interactions were monitored by ¹H NMR spectroscopy and g.l.c. Changes in the values of $\delta(CH_2)$ for $[(PPh_2R)_n$ - $Pd(CH_2SR')X$ are listed in Tables I and II for interactions with $CH₃CO₂H$ and $CF₃CO₂H$ respectively. Examination by g.1.c. indicated that very little, if any, of the cleavage product (R'SMe) was formed using CH_3CO_2H or upto 3 equivalents of CF_3CO_2H and with short reaction times.

^{**}Author to whom correspondence should be addressed.

Equivalents of CF_3CO_2H	δ CH ₂					
	0	0.25	0.50	1.0	2.0	
$[(PPh3)2Pd(CH2SPh)Cl]$	2.42	2.78	2.84	3.24	3.30	
$[(PPh3)2Pd(CH2SPh)Br]$	2.73	3.05	3.11	3.24	3.16(br)	
$[(PPh_3)_2Pd(CH_2SPh)]]$	2.96	2.97	2.98	3.09	3.13	
$[(PPh3)2Pd(CH2SPh)SCN]$	2.48	2.64	2.80	3.16		
$[(PPh3)2Pd(CH2SMe)Cl]$	3.26	3.33	3.36	3.36	3.30(br)	
$[(PPh3)2Pd(CH2SMe)SCN]$	3.13	3.22	3.24	3.24	3.20(b)	
$[(PPh2Me)2Pd(CH2SMe)Cl]$	2.71	2.87	2.98	3.09	3.20	
$[(PPh2Me)2Pd(CH2SMe)Br]$	2.98	3.04	3.05	3.08	3.04(br)	
$[(PPh2Me)2Pd(CH2SMe)I]$	3.18	3.18	3.19	3.24	3.22	
$[(PPh3)Pd(CH2 SMe)Cl]$	2.68	2.74(br)	2.76(br)	2.80(b)	2.82(br)	
$[(PPh_3)Pd(CH_2SMe)Br]$	2.73	2.80 ^a	2.80 ^a	2.82^{a}	$2.82^{\rm a}$	
$[(PPh3)Pd(CH2 SMe)]$	2.73	2.76	2.80(br)	2.80(br)	2.84(br)	

TABLE II. Proton Chemical Shifts, δ CH₂, for Interactions of $[(PPh_2R)_nPd(CH_2SR')X]$ and CF_3CO_2H in CDCl₃ Solution.

 a d J 4 Hz.

TABLE III. Products of Reaction of Organopalladium Compounds with Proton Acids.

(continued on facing page)

Organothiomethyl-Pd(II) Complexes. Part 2. 35

TABLE III. *(continued)*

Organopalladium Reagent	Product	M.p.	ν (cm ⁻¹)	Analysis, Calc. (Found)			
		(C)		C	H	X	
With HCl							
$[(PPh3)2Pd(CH2SPh)Cl]$	$[{(\text{PPh}_3)_2 \text{PdCl}_2}]$	279-83 dec.	355(PdCl)	61.6 (60.3)	4.3 (4.3)	10.1 [C] (11.1)	
$[(PPh3)2Pd(CH2SPh)Br]$	[(PPh ₃) ₂ PdCBr]	$276 - 80$ dec.	310(PdCl)	57.2 (57.7)	4.0 (4.0)	10.8 [Br] (10.3)	4.9 [Cl] (4.7)
$[(PPh3)2Pd(CH2 SPh)SCN]$	$[(PPh_3)_2PdCl_2]$	$280 - 4$ dec.	360(PdCl)	61.6 (61.2)	4.3 (4.3)	10.1[Cl] (9.8)	
$[(PPh3)2Pd(CH2SPh)]$	$[(PPh_3),PdCl]$	$276 - 8$ dec.	310(PdCl)	54.5 (52.0)	3.8 (3.5)	16.0[1] (18.2) [1]	4.8 [Cl] (6.1) [C]
$[(PPh3)2Pd(CH2SMe)Cl]$	$[(PPh_3)_2PdCl_2]$	$280 - 82$ dec.	355(PdCl)	61.6 (61.7)	4.3 (4.2)	10.1 [Cl] (9.8)	
$[(PPh3)2Pd(CH2SMe)SCN]$	$[(PPh_3), PdCl_2]$	278-282 dec. 360(PdCl)		61.6 (60.9)	4.3 (4.1)	10.1 Cl] (9.2)	
$[(PPh2Me)2Pd(CH2SMe)Cl]$	$[(PPh2Me)2PdCl2]$	$190 - 2$ dec.	310(PdCl) 290	54.1 (52.1)	4.5 (4.5)	12.3[Cl] (12.2)	
$[(PPh2Me)2Pd(CH2SMe)Br]$	$[(PPh2Me)2PdClBr]$	$189 - 94$ dec.	300(PdCl)	50.2 (49.7)	4.2 (4.4)	13.1 [Br] $(12.9)[Br]$ $(6.2)[Cl]$	5.7 [C1]
$[(PPh2Me)2Pd(CH2SMe)I]$	$[(PPh2Me)2PdCl1]$	$217 - 20$ dec.				19.0[1] (22.1) [1]	5.3 [C1] (6.9) [CI]
$[$ (PPh ₃)Pd(CH ₂ SMe)Cl]	$[(PPh3)PdCl2]$ ₂	$260 - 6$ dec.	360 300(PdCl) 270	49.2 (49.0)	3.4 (4.2)	16.2 [Cl] (I5.1)	
$[(PPh3)Pd(CH2SMe)Br]$	$[(PPh3)PdClBr]_2$	$256 - 62$ dec.	360(PdCl)	44.7 (45.6)	3.4 (4.0)	16.6 [Br] (17.5)	
$[(PPh3)Pd(CH2 SMe)]]$	$[(PPh_3)PdCl1]_2$	$250 - 5$ dec.	355 (PdCl)	40.7 (41.1)	2.8	23.9 [1] (3.4) (23.6)	

(a) For all interactions of $CH₃CO₂H$ and interactions involving low concentrations of $CF₃CO₂H$ (i.e. up to 3 equivalents), addition of hexane to the CDCl₃ solution led to the recovery of the starting organopalladium compound in very high yield. Recrystallisation from dichloromethane/hexane gave products having analyses and physical properties in accord with the expected values.

(b) Solutions of the organopalladium compound and CF_3CO_2H (10 equivalents) in CDCl₃ were maintained at room temperature. The extents of protonolysis were monitored by g.1.c. At the completion of the reactions (about 2d for $[(PPh_2R)_2Pd(CH_2 SR'$)X] and 7d for $[(PPh_3)Pd(CH_2SMe)X]$, addition of hexane resulted in the separation of oils or solids, which were crystallised from dichloromethane/ hexane. Data for these compounds are in Table III.

Reactions with Hydrogen Chloride

(a) Hydrogen chloride was bubbled through a solution of the organopalladium compound (0.18- 0.25 M) in CDCl₃. The solutions became paler in colour. An immediate change in δ (CH₂) occurred (see Table IV), and a yellow crystalline precipitate

was collected; data for these products are listed in Table III.

(b) To a solution of $[(PPh_3)_2Pd(CH_2SPh)Cl]$ in $CDCl₃$ (0.28 *M*) was added successively equimolar MeOH and MeCOCl. The yellow solution immediately became paler in colour and δ (CH₂) changed from 2.42 to 2.96. Formation of PhSMe was monitored by 'H NMR and g.l.c., with a 100% yield after 24 h. The yellow crystalline solid $[(PPh₃)₂PdCl₂]$ was collected by filtration; yield $>95\%$.

Results and Discussion

Reactions of the complexes having monodentate $CH₂SR'$ groups, as in $[(PPh₂R)₂Pd(CH₂SR')X]$ $(R, R' = Me$ or Ph; $X = Cl$, Br, I or SCN), and bidentate groups, as in $[(PPh_3)Pd(CH_2SMe)X]$ $(X = Cl,$ Br or I), were studied with the weak carboxylic acid, $CH₃CO₂H$, and with the strong acids, $CF₃$ - $CO₂H$ and HCl.

Reactions of $[(PPh_2R)_2Pd(CH_2SR')X]$

Two stages of the proton acid/ $[(PPh_2R)Pd(CH_2-PQ)]$ $S_{\mathbf{R}}(X)$ interactions were recognised: (*a*) a reversible

	$[(PPh2R)2Pd(CH2SR')X]$	$[(PPh2R)2Pd(CH2SR')]$ + HCl
$R = Ph$, $R' = Ph$, $X = Cl$	2.42	2.96
$R = Ph$, $R' = Ph$, $X = Br$	2.73	2.96
$R = Ph$, $R' = Ph$, $X = SCN$	2.47	3.29
$R = Ph$, $R' = Ph$, $X = I$	2.96	2.96
$R = Ph$, $R' = Me$, $X = Cl$	3.26	3.31
$R = Ph$, $R' = Me$, $X = SCN$	3.13	3.28
$R = Me, R' = Me, X = Cl$	2.71	2.82
$R = Me$, $R' = Me$, $X = Br$	2.98	2.60
$R = Me$, $R' = Me$, $X = I$	3.18	2.78

TABLE IV. Changes in ¹H δ CH₂ on Addition of HCl to Solutions of $[(PPh_2R)_2Pd(CH_2SR')X]$ in CDCl₃.

interaction using the weak acid $CH₃CO₂H$ (all concentrations) or the stronger acid $CF₃CO₂H$, at low concentrations or with short reaction times, and (b) a irreversible reaction at higher concentrations and/or longer reaction times of $CF₃CO₂H$ or with HCl (even one equivalent).

Additions of CH_3CO_2H or CF_3CO_2H (<3 equivalents) to the organopalladium compound in CDCl₃ solution led to changes in colour (orange to yellow) and in the 'H NMR spectra, see Tables I and II. [Shifts in δ CH₂ are also found on immediate addition of HCl, Table IV]. The NMR changes are most marked for complexes containing the CH₂SPh ligand; smaller changes are observed for the $CH₂SMe$ complexes*. It is noteworthy that the values for δ CH₂ obtained for the complexes in the presence of 2 equivalents of CF₃- $CO₂H$ are all 3.2 \pm 0.1 (Table II), *i.e.* they cover a much smaller range of values than found for the organopalladium complexes in the absence of the acid (these are shown in Table IV). The reversible nature of this interaction is indicated by the recovery of the starting organopalladium compound on addition of hexane. The 'H NMR spectrum and g.1.c. revealed that very little, if any, protonlysis of the complex to give MeSR' had occurred under these conditions.

Our interpretation of this reversible reaction is protonation of the complex at sulphur to give (III) ^{**}. This requires a considerable enhancement $[(PPh_2R)_2PdX(CH_2SR)] \rightleftharpoons$ (PPh, R) -PdX(CH, S) 'R

 (III)

of the basicity of the sulphur (arising from the α -Pd) as compared to that in simple organic sulphides. Protonation of sulphides, $Me₂S$ or PhSMe, has been studied [5]. Such studies reveal that concentrated $H₂SO₄$ is required to effect protonation in aqueous media, much more powerful acid conditions than used in this study. Evidence for the enhanced basicity of S in the related platinum complex, $[(PPh₃)₂$. Pt(CH₂SMe)Cl], has been found by Okawara et al. [6]. They showed that the sulphonium salt (IV) could be isolated from reaction with $MeOSO₂F$

$$
[(PPh3)2PtCl(CH2SMe)] + MeOSO2F \longrightarrow
$$

$$
[(PPh3)2PtCl(CH2SMe2)]*SO3F
$$

$$
(IV)
$$

The irreversible reaction results when CF_3CO_2H $($ >3 equivalents) or HCl is used; the amounts of products of protonolysis increased with time:

$$
[(PPh2R)2Pd(CH2SR')X] + HA \xrightarrow{CHCl_3}
$$

 $[(PPh_2R),PdX(A)] + MeSR'$

 $A = Cl$ or $O₂ CCF₃$

Complete protonlysis of $[({\rm PPh}_3),{\rm Pd}({\rm CH}_2{\rm SPh})X]$ $(X = Cl, Br, I \text{ or } SCN)$ and $[(PPh₂R)₂Pd(CH₂SMe)X]$ $(R = Ph \text{ or } Me; X = Cl \text{ or } SCN)$ occurred using CF_3 - $CO₂H$ (10 equivalents) in CDCl₃ solution within 2d; the SCN complexes were slightly the most reactive

^{*}Values of δ CH₂SCH₃ also altered on addition of the acid. **An alternative explanation for the shift in δ (CH₂) on addition of CH_3CO_2H or CF_3CO_2H to the organopalladium complex $[(PPh_2R)_2Pd(CH_2SR')X]$ based on anion exchange, i.e. CR''_3CO_2 for X, can be dismissed as the only process in solution since shifts in δ (CH₂) result even for $[(PPh_3)_2$ - $Pd(CH_2SPh)Cl$] when HCI is added.

within each series. At the end of the reaction, as indicated by g.1.c. and NMR, hexane was added to precipitate the organopalladium reaction product (Table III). The products of reaction of $CF₃CO₂H$ $[(PPh₂R)₂PdX(OCOCF₃)]$ $(R = Me$ or Ph) had $v(CO) = 1670-1680$ cm⁻¹, values expected for a monodentate $CF₃CO₂$ ligand. The products of reactions with HCl were dihalides $[(PPh₂R)₂PdXCl]$ $(X = CI, Br or I)$ or the CHCl₃ solvated species. Where mixed dihalides could be formed, analyses suggested that incompletely pure compounds were usually obtained after recrystallisation. The complexes isolated from the reactions of $[(PPh₂R)₂$ - $Pd(CH_2SPh)SCN$] ($R = Me$ or Ph) with HCl were $[(PPh₂R)₂PdCl₂]$.

The overall reaction with acids is considered to proceed via the protonated complex;

$$
[(PPh2R)2Pd(CH2SR')X] + HA \rightleftharpoons (III) \longrightarrow
$$

 $[(PPh₂R)₂PdX(A)] + MeSR'$

Reactions of [(PPh3)Pd(CH2SMe)X]

These compounds, containing the bidentate CH₂-SMe group, react much less readily with proton acids in $CDCl₃$ solution than do the monodentate complexes. This points to a role in the protonolysis reaction for the sulphur since a coordinated sulphur, as in $[(PPh_3)PdCH_2SMe)X]$, is unable to act as a basic centre for the proton.

Addition of 2 equivalents of $CF₃CO₂H$ resulted in only small changes in the 'H NMR spectra (Table II). Reaction occurred when $CF₃CO₂H$ (10 equivalents) or HCl (excess) were used:

$$
[(PPh3)Pd(CH2SMe)X] \xrightarrow{HA} [(PPh3)PdXCl]_2
$$

 $A = CI$ or CF_3CO_2

The organopalladium products were isolated on addition of hexane and were recrystallised from dichloromethane/hexane. From the $[(PPh_3)Pd(CH_2SMe)Cl]$. $CF₃CO₂H$ reaction, the product was $[(PPh₃)PdCl (O_2CCF_3)]_2$ (V, X = Cl). Details from its IR spectrum are $v(C_1)$ at 1675 cm⁻¹ (monodentate CF_2) $CO₂$) and $v(PdCl)$ at 310 cm^{-1} (bridging and *trans*to CF_3CO_2) and 260 cm^{-1} (bridging and *trans*- to PPh_3). Similar structures were envisaged for the other $[(PPh_3)PdX(OCOCF_3)]$ $(X = Br \text{ or } I)$ products.

The organopalladium complexes from the HCl/ $[(PPh₃)Pd(CH₂SMe)X]$ reactions were collected and recrystallised in a similar manner as were those from the $CF₃CO₂H$ reactions. The product (VI) from reaction of $[(PPh_3)Pd(CH_2SMe)Cl]$ and HCl had IR absorptions at 360 , 300 and 270 cm^{-1} corresponding to $\delta(PdCl)$ terminal, (bridging and *trans* to Cl) as well as (bridging and *trans*- to PPh₃ respectively [7]. Similar structures were assigned to all $[({\rm PPh}_3)-]$ $PdXCL$ ₂.

$$
\begin{array}{c}\n\mathsf{PPh}_3 \\
\hline\n\mathsf{C1}\n\end{array}\n\qquad\n\begin{array}{c}\n\mathsf{Pd} \\
\hline\n\mathsf{Y}\n\end{array}\n\qquad\n\begin{array}{c}\n\mathsf{C1} \\
\hline\n\mathsf{PPh}_3\n\end{array}\n\qquad (VI)
$$

References

- H. D. McPherson and J. L. Wardell, Inorg. *Chim. Acta, Submitted.*
- G. Yoshida, Y. Matsumura and R. Okawara, *J. Organomet. Chem., 92, C53* (1975);
- G. Yoshida, H. Kurosawa and R. Gkawara, *ibid., 113, 85* $(1976);$
- T. Chivas and P. L. Timms, *ibid., 118, C37* (1976);

K. Miki, G. Yoshida, Y. Kai, N. Yasuaka and N. Kasai, *ibid., 14b,* 195 (1978);

K. Miki. Y. Kai. N. Yasuaka and N. Kasai. *ibid., 165, 79* $(1979);$

G. Yoshida, H. Kurosawa and R. Okawara, *Chem. Letts., 1387* (1977);

K. Miki, Y. Kai, N. Yasuoka and N. Kasai, *BUN. Chem.* Soc. Jpn., 54, 3639 (1981).

- P. M. Maitlis. P. Espinet and M. J. H. Russell, in 'Comprehensive Organometallic Chemistry', Eds. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, 1982. Chapter 38.4.
- H. D. McPherson and J. L. Wardell, *Inorg. Chim. Acta, 35, L353* (1979).
- P. Bonvicini, A. Levi, V. Lucchini and G. Scorrano, J. *Chem. Sot., Perkin Evans., 2267* (1972); P. Bonvicini, A. Levi, V. Lucchini, G. Modena and G. Scorrano,J. *Am. Chem. Sot., 95, 5966* (1973); E. M. Amett, *Prog. Phys. Org. Chem., 1, 223* (1963).
- G. Yoshida, H. Kurosawa and R. Okawara, *J. Organomet. Chem., 131, 309* (1977).
- R. J. Goodfellow, P. L. Goggin and L. M. Venanzi, J. *Chem. Sot. (A),* 1897 (1967).