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Complexes of Zn/Hg Bimetallic Tetrathiocyanates with Chelating N,N’-Donors 
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Bimetallic Zn/Hg tetrathiocyanate complexes with 
N,N’-chelating ligands of general formula (L-L),.,- 
Zn(NCShHg(SCNh (n = 1, 2; L-L = 2,2’-bipyri- 
dine, I,1 0-phenanthroline, 2,9-dimethyl-I,lO-phenan- 
throline) were prepared from ZnClz or Zn(SCN), 
by reaction with the corresponding stoichiometrical 
amounts of Hg(SCN12 and ligand. Only a complex of 
composition [Zn(L-L),][Hg(SClv),l could be isolat- 
ed from the reactions in molar ratio 1:3 Znlligand for 
L-L = l,l@phenanthroline. The reaction from 
ZnCl~ with diacetyldihydrazone in molar ratios 1:2 
or more affords a single complex of composition 
(L-L)Zn(NCS)2ClzHg and the reaction from Zn- 
(SCivlz in molar ratios 1:2 or more gives only a com- 
plex of composition (L-L)Zn(NCS)zHg(SCN)z. The 
complexes were studied by elemental analysis, 
conductance measurements and infrared spectro- 
scopy. An infmred study in the low-frequency rep’on 
was made by the isotopical substitution method, 
using 68Zn marked complexes. 

Introduction 

It is well known that the polymeric bimetallic 
tetrathiocyanates of general formula MM’(SCN), 
(M = Mn(II), Fe(II), Co(H), Ni(II), Cu(II), Zn(I1); 
M’ = Zn(II), Cd(H), Hg(II), Pd(I1)) react with dif- 
ferent Lewis bases to form complexes in which the 
coordination numbers of M and M’ can be made to 
rise with respect to the original compounds. The 
different complex types and structures have been 
recently reviewed by Singh [l] . 

Only one type of Zn/Hg bimetallic tetrathiocya- 
nato complex of general formula L2Zn(NCS),- 
Hg(SCN), (L = pyridine, thiohydantoine, ethylene- 
thiourea, thiazolhydantoine, pyrazine-2,3-dicarbox- 
amide, isonicotinic acid hydrazide) has been 
described [2-S], in which both metallic ions are 
four-coordinated. 

In this work we study the possibility of forma- 
tion of complexes containing six-coordinated Zn(II) 
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ions derived from ZnHg(SCN), with the chelating 
ligands, 2,2’-bipyridine (bipy), 1 ,lO-phenanthroline 
(phen), 2,9-dimethyl-l ,lO-phenanthroline (DMP) and 
diacethyldihydrazone (DDH), using different prepara- 
tive routes and molar ratios of reactants. 

The infrared spectra, especially in the v(C~N) and 
v(Zn-N) frequency regions, are the principal 
diagnosis of bonding in this study. The metal isotope 
effect on metal-ligand vibrations [6] by changing 
of Zn is used for the assignment of the v(Zn-N) 
stretching frequencies. 

Results and Discussion 

In the reactions with bipy, phen and DMP in molar 
ratio Zn/ligand 1: 1 and 1:2 the composition of the 
complexes obtained corresponds to the molar ratio 
employed. The use of ZnClz or Zn(SCN)2 in the 
reaction affords the same results. The reactions in 
molar ratio 1:3 with these ligands yield a 1:3 
complex only in the case of the phenanthroline 
ligand. 

In the reactions with DDH from ZnClz as starting 
compound no definite complex was formed for the 
1 :l Zn/DDH molar ratio and the reaction in molar 
ratio 1:2 leads to the formation of ZnHgC12(NCS),- 
(DDH). ZnHg(SCN).,(DDH)* is formed only in reac- 
tions from Zn(NCS)* when the molar ratio Zn/ 
DDH is 1:2 or more. 

In all cases the solubility of the different com- 
plexes seems to determine the stoichiometry of the 
reactions. 

The complexes obtained are white, microcrystal- 
line solids, insoluble in the organic solvents of 
medium polarity and soluble in DMSO and DMF. 
The 1: 1 and 1:2 complexes are non-electrolyte in 
DMF, but the 1:3 phenanthroline complex behaves 
as an ionic compound. It was not possible to obtain 
crystals of these solids adequate for structure deter- 
minations. Table I lists the analytical results and 
physical data of all these complexes. 
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Table II gives the most significant infrared 
frequencies in the 4000-350 cm-’ region for the dif- 
ferent complexes. In relation with the ligand vibra- 
tions, the complexes with bipy, phen and DMP show 
the shifts and splittings characteristic of the coordi- 
nated ligands [7,8] . In the complexes with DDH, the 
v(C=N) stretching vibrations of the hydrazone groups 
appear displaced towards the higher frequency values, 
as occurs with other complexes of this ligand [9, lo]. 

The I.R. frequencies which afford most informa- 
tion about the bonding type are those corresponding 
to the v(CrN) stretching vibrations of the thiocya- 
nate groups. The complexes of composition ZnHg- 
(SCN),(L-L) (L-L = bipy, phen, DMP) shows a 
structured band with two maxima at higher 
frequency values, which can be undoubtedly assign- 
ed to Y(C=N) of bridging thiocyanate groups and two 
(or three) maxima at lower frequency values, which 
can be assigned to v(C=N) of mercury-bonded thio- 
cyanate groups. The spectra of the ZnHg(SCN),- 
(L-L), complexes in the thiocyanate region are quite 
similar, but the v(C-N) stretching frequencies appear 
slightly displaced towards the lower values with 
respect to the 1:l complexes. No v(C-N) bridging 
thiocyanate bands were observed in the spectrum of 

ZnHg(SCN)4(phen)a, which renders the ionic formula 
[Zn(phen)a] [Hg(SCNQ] highly probable for this 
complex. (DDH)Zn(SCN)2C12Hg also shows two 
bands corresponding to v(C-N) of bridging thio- 
cyanate groups. 

Only in the DDH ccmplexes could the v(C=S) 
stretching frequencies of the thiocyanate groups be 
observed, owing to the presence of numerous 
strong aromatic ring bands of the ligands in the 
spectra of the remaining complexes [8]. 

The assignments of the metal-ligand vibrations 
in the region 350-200 cm-’ were made by the iso- 
topic displacement method. The metal-ligand 
stretching frequencies show isotopical shifts (AC = 
2-6 cm-‘) if the metal is isotopically substituted 
[6, 11-131 whereas the ligand bands activated by 
coordination [14-161 appearing in the same spec- 
tral region remain at the same frequency values. 
Table III shows the assignments of the u(Zn-N) 
stretching-frequencies together with the corres- 
ponding isotopical shifts (AF,). The Zn natural 
isotopic mixture and 68Zn (97.91%) were used for 
the preparation of the samples studied here. Only 
the “Zn complexes which can be obtained from 
ZnCl, were prepared. 

The spectra of the ZnHg(SCN)4(L-L) complexes 
show two bands at 284-269 cm-‘, which shift 
towards the lower frequencies (A3 = 2.4 cm-‘) in 
the marked compounds. These bands, in accordance 
with assignments in the literature for similar com- 
pounds [l, 2, 51, were assigned to v(Zn-NCS) 
stretching vibrations. The same complexes show two 
other bands at 245-215 cm-’ which are sensitive 
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TABLE II. The Most Significant Infrared Frequencies in the 4000-350 cm-’ Region. 

Complexes V(CEN),ri v(C=N)t,, 6 (SCN) v(C=S) v(C=N) 

2160~s 
2135sh 

2120s 

2080m 

470s 

455m 

446m 

470m 

456s 

441s 

434m 

470m 

466m 
455w 

446s 

464m 

447m 

437w 

427~ 

478m 
465m 

442m 

437sh 

472m 

448m 

438m 

480m 

452~ 

444w 

436m 

468m 

453sh 

445m 

472m 

465m 

458m 

438m 

114w 

702~ 

115w 

703w 

16lOm,br 

1610s 

2147sh 

213&s 

2110s 

2075sh 

2160s 

2140m 

2090m 

2075m 

2130m 

2115s 

2083m 

2070s 

[(phenhznl WdSCNh I 2110m 

2080s 

2060s 

2160s 

213ow 

2118~ 

2095s 

2080s 

2113m 

2075s 

2052s 

2154m 

2127s 

2159vs 

2142m 

2126sh 

2145~ 

2128s 

2111s 

2075sh 

TABLE III. Infrared Spectra in the 350-200 cm-’ Region. 

Complexes v(Zn-NCS) AC* v(Zn-NL) A;* dHg-S) Activated ligand bands 

(bipy)Zn(NCS)2Hg(SCN)2 

(bipykZn(NCS)2Hg(SCN)2 

(phen)Zn(NCS)2HgGCN)2 

@hen)2 ZnWCS)z Hg(SCN)2 

[WenhZnl WdSCNhl 

274s 

269s 

272s 
268s 

284s 
274s 

284m 

271s 

(DMP)Zn(NCS)2Hg(SCN)2 

(DMP)2Zn(NCS)2Hg(SCNj2 

275s 

269s 

2 74 s,br 

3.0 

3.0 

4.0 
4.0 

2.0 
4.0 

2.0 

3.0 

232m 

220sh 

230 
222 

242m 
220m 
241m 

227~ 

235~ 

222m 

235~ 

219m 

232~ 

218m 

6.0 

6.0 

7.0 
7.0 

2.0 

5.0 
3.0 

4.0 

304w(B), 29Ow, 283m(C) 

263w(D), 241sh(E) 

303w(B), 29Ow, 282w(C) 
261w(D), 245w(E) 

305w(B), 252w(C), 248w(C) 

206~ 

210w 

208~ 

304w(B), 253w(C), 248w(C) 

304w(B), 262m(C), 250m(C) 

304w(B), 292w(B), 284w(B) 

263w(C), 25Ow(C) 

305w(B), 291w(B), 284w(B) 

263w(C), 25Ow(C) 

20 7w 

210m 

206~ 

4.0 

3.0 

4.0 

5.0 

5.0 

4.0 

2.0 

210w 

208~ 

(continued overleaf) 
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TABLE III. (continued) 

Complexes v(Zn-NCS) AV* u(Zn-NL) AC* @g-S) Activated &and bands 

(DDH)Zn(NCS)2C12Hg 275s 

264~ 

(DDH)2Zn(NCS)2Hg(SCN)2 280s 

270s 

*AF indicates metal isotope shift, F(64Zn) - $‘Zn). 

25ow 299w, 

247~ 

240~ 216m 

234m 208~ 

to the isotopical substitution (AF = 6-7 cn-‘) and 
have been assigned to v(Zn-N,) stretching 
frequencies. The spectral ranges at which the v(Zn- 
NCS) and V(Zn-NL) stretching frequencies appear 
in the ZnHg(SCN)4(L-L)2 complexes are surpris- 
ingly similar to those of the corresponding I:1 com- 
plexes. The presence of ligand bands activated by 
complexation in the same spectral region, which 
are stronger than in the corresponding 1: 1 com- 
plexes, makes it sometimes difficult to observe the 
v(Zn-Nr,) bands; however, a careful comparison 
of the normal and marked complex spectra makes 
their assignments possible. It is to be noted that the 
isotopical shifts, A?, are greater for the v(Zn-NCS) 
stretching vibrations. 

On the basis of the infrared study in the thio- 
cyanate v(CzN) stretching frequency region, we 
suppose that the ZnHg(SCN&,(L-L), (n = 1, 2) 
complexes are probably molecular species with 
the following tentative structural formulae: 

N NCS 

’ Z”’ \ Hg,scN q, NCS \ ,SCN 
*, 

N ’ 'NCS/ ’ SCN N'Lk' NCS' SCN 

( N-N = bipy, phen, DMP ) ( N-N = bipy, phen,DMP, DDH) 

The similarity of the v(Zn-N) stretching 
frequencies in the 1: 1 and 1:2 complexes could be 
explained if the expected releasing of the Zn-N 
bonds, caused by the increase in the coordination 
number of Zn in the 1:2 complexes, were compensat- 
ed by a reinforcement of these bonds by a 71 back- 
bonding to both thiocyanate and L-L ligands. This 
could explain also the lower v(C-N) frequencies of 
the bridging thiocyanate groups in the 1:2 com- 
plexes. 

(DDH)Zn(NCS)2C12Hg is probably a polymeric 
complex with bridging chloride and thiocyanate 
groups on the basis of the absence of bands assign- 
able to V(Hg-Cl) stretching frequencies and the 
presence of v(C~N) bands only in the range corres- 
ponding to bridging thiocyanate groups. In the low- 

frequency region strong bands at 275 and 264 cm-’ 
appear which were assigned to v(Zn-NCS) stretch- 
ing frequencies. The weak bands at 250 and 247 
cm-’ were assigned to v(Zn-N,). 

In the spectrum of [Zn(phen)s] [Hg(SCN),] no 
bands assignable to v(Zn-NCS) stretching vibra- 
tions were observed. Two bands at 235 and 222 
cm-’ were assigned to v(Zn-NL) stretching vibra- 
tions. 

V(Hg-S) appears in all these compounds as a 
medium or weak band in the range 204-210 cm-‘, 
similar to those given in the literature for analog- 
ous compounds [2]. 

From the foregoing we conclude the existence 
of complexes containing chelating ligands derived 
from ZnHg(SCN)4 in which the Zn(I1) ions are 
six-coordinated. Two or three complexes of four- 
or six-coordination around the Zn(II) ions can 
be formed depending on the molar ratio Zn/ligand of 
the reaction. 

Experimental 

ZnC12 (FEROSA), Hg(SCN), (Merck), 2,2’-bipy- 
ridine (Merck), 1 ,lO-phenanthroline (Scharlau) and 
2,9-dimethyl-l,lO-phenanthroline (Merck) of analy- 
tical grade were obtained commercially. 

Zn(SCN)2 and diacetyldihydrazone were prepared 
by methods described in the literature by Masaki 
[ 171 and Bock [ 181 respectively. 

68Zn (97.9%) was supplied by the Electromagnetic 
separation Groups, Chemistry Division, A.E.R.E., 
HARWELL. 

General Method of Preparation 
A solution of ZnClz or Zn(SCN)2 in a minimum 

amount of absolute ethanol was added to a solution 
of the required amount of Hg(SCN)* in the same 
solvent. After 12 hr of stirring at room tempera- 
ture, a solution of the ligand in the same solvent 
was added to the suspension formed, using the 
amount of ligand required for the desired com- 
plex, and the reaction mixture was stirred for 48 
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hr. A white, microcrystalline precipitate was form- 
ed, which was filtered off, washed with ethanol and 
ether and dried in a vacuum. 

Identical products were isolated from the reac- 
tions of ZnClz or Zn(SCN)* with bipy, phen and 
DMP as ligands, and therefore ZnClz was used as 
reactant for the preparation of the 68Zn complexes. 
38 mg of @‘Zn treated with HCl (Merck) affords 
enough 68ZnC12 for the preparation of the amount 
of the complex required for the I.R. study. 

Analyses and Physical Measurements 
C, H, N analyses were carried out by the Elemental 

Micro-Analysis Limited laboratories, Amberley, Bea- 
worthy (Devon) England. Zn and Hg were analyzed 
by Atomic Absorption Spectrophotometry, using a 
Perkin-Elmer 303 spectrophotometer. 

Conductance measurements were performed in 
DMF at room temperature with a Philips conducti- 
vity bridge, Model No. CM 4144 and a PR 9512/00 
cell. Infrared spectra in the 4000-350 cm-’ range 
were recorded as KBr disks on a Perkin-Elmer 325 
spectrophotometer. The low-frequency (350-200 
cm-‘) I.R. spectra were recorded on the same 
spectrophotometer, as Nujol mulls or polyethylene 
disks at a scanning rate of 2-4 mm/cm-’ and with 
a direct reading of the wave-numbers on the 
apparatus, the reproducibility on an average of three 
measurements being kO.5 cm-‘. 
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