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It is shown that when applying the interligand 
repulsion model (IRM) to tris-bidentate complexes, 
M(bidentate)s, the repulsion between the bonding 
atoms of each bidentate ligand cannot always be dis- 
regarded, as suggested in the initial version of this 
model. The intraligand repulsion is essential in deter- 
mining the geometries of complexes such as dithio- 
lates. Correlations between structure parameters 
help to reveal the ligand stereorigidity and the effect 
of the metal ion size on the geometry of the com- 
plexes. 

Introduction 

It is now generally acknowledged that repulsion 
between the non-bonded atoms (interligand repul- 
sion) in coordination compounds plays an essential 
role in determining the geometry or the molecular 
structure of these compounds [l-3]. The chelate 
compounds take a special position amongst this 
class of compounds, for which steric requirements 
imposed by the chelate ring formation may domi- 
nate the factors influencing the molecular structures 

[41. 
A general assumption of the Interligand Repul- 

sion Model (IRM) when applied to complexes of 
bidentate ligands, M(bidentate),, is that the ligands 
are considered as stereochemically rigid [l] . 
Consequently, the repulsion between the bonding 
atoms in each ligand is neglected as being part of the 
ligand energy, and only repulsions between bonding 
atoms of different ligands are taken into account 

[Il. 
We shall show here that for the M(bidentate)3 

complexes: (i) this assumption is not always justifi- 
ed; (ii) the bidentate ligands could be classified with 
respect to their stereochemical behaviour on the basis 
of whether this assumption holds or not; (iii) correla- 
tions between structure parameters and with the size 
of the metal ion could be useful in revealing the 
changes occurring with the ligand upon coordina- 
tion. 
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Fig. 1. Geometry of a M(bidentate)s complex of D3 sym- 
metry.Ineqns. (5)-(9): A=5,B=3,C=6,D=l,EZ4,F 
= 2. 

Theory 

With the exception of six tris (dithiolato) com- 
plexes and three tris (acac) complexes that are close 
to the D3h (trigonal prismatic) limit, all structurally 
established tris chelates have D3 or near D3 symmetry 
[3,4] . This is illustrated in Fig. 1. 

In terms of the Repulsion Energy Model, the quan- 
tity to be minimized is [ 1 ] 

U = c a,.,dij” = a,Xr- 
i<j 

or 

(1) 

X = C dT/r-” = f(0j, &) (2) 
i<j 

where U is the repulsion energy between the ligands 
atoms located on a sphere of radius r, r is the distance 
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between the metal ion and the ligand bonding atoms, 
dti is the distance between the i-th and j-th ligand 
atoms, n is the exponent in the repulsion law, X is 
the repulsion energy coefficient, and 0, $ are the 
polar angles of the ligand bonding atoms. The 
summation is carried over all ligand bonding 
atoms. 

Usually the problem of minimizing U is replaced 
by minimizing X from eqn. (2), for in such a case 
the proportionality constant a, is cancelled. 

With the constraint imposed by the D3 symmetry 
(Fig. l), the distances between the ligand bonding 
atoms may be expressed in terms of two (out of 
four) angles defining either the structure of the com- 
plex (0, $J or J/) or that of the bonded ligand (cY). 
These are: (Y the bite angle, @ the trigonal twist angle, 
which by definition [3] is the projection of CY onto 
the plane which is normal to the C3 axis, rl, the pitch 
angle subtended by the plane of the chelate ring and 
the C3 axis, and finally 0 the polar angle subtended 
by the M-L bonds and the C3 axis. If r is kept cons- 
tant (the ligand atoms are considered as points mov- 
ing on a sphere of radius r), only two angles are 
needed to describe fully the geometry of the 
complex, the other two angles being redundant. 
They are related by [3] : 

Fig. 2. Dependence of the repulsion energy coefficient X on 
the bite (0~) and trigonal twist (@) angles of M(bidentate)3. 
The dashed lines depict the paths of the minima of the para- 
metric equations X = f(o), and X = f(a)@, denoted as 
(&&Or and (G,&#,, respectively. The absolute minimum is 

at the cross point at @ = 60” and ci = 90”, i.e. for a pseudo- 

octahedral structure. Intraligand repulsions are included. 

cos (a/2) = sine .cos(@/2) (3) 

sin (a/2) = cos~/cos~ (4) 

While the choice between 0, @ and II, is arbitrary, 
Q should be used as an important feature of the 
coordinated ligand. The plots of U = f(e, CY), U = 
f($, a) and U = f($, CY) have revealed that the varia- 
tion of U is the greatest for #J and for this reason 
we shall use further the set ($, c~). 

It follows from the imposed symmetry constraint 
that the three ligands have equal (Y’S, and 4 should 
describe the rotation of the upper triangle with 
respect to the fixed lower triangle (see Fig. 1). In 
such a case simple trigonometry gives: 

Thus from (2) setting r = 1, we obtain 

x = 6/d:* + 3(l/d:a + l/d:5 + l/d% (9) 

Hence from (S)-(9) it follows that X is a function 
of only two variables and its critical points (extrema) 
are given by the conditions: 

= 0 and 0 (IO) 

d;? = df3 = d& = d:s = d& = d& = 

= 3 cos2(cY/2)/cos~(~/2) 

dt4 = d;s = d$, = 

(5) 

It should be noted at this stage that eqns. (S)-(8) 
have been written in a form suitable for computer 
programming. Kepert [ 1 ] and Fackler et al. [2] have 
preferred the use of the normalized bite distance b 
and with the initial assumption of constant intra- 
ligand repulsion, they have minimized X = f(G) at 
constant b i.e. X(&. The quantity b is defined 

[1,3lb 
-- - 

=4 - 2 [ 1 t cos (4 + 0)] c0s2@/2)/c0s2(~/2) (6) 

d& = d& = dZ, = 

= 4 - 2 [ 1 + cos($ + 120)] cos~(ol/2)/cos2(~/2) (7) 

d$ = d& = d;s = 

b = LL/ML = 2sin(cu/2) (11) 

for symmetrically bonded ligands. E is the dis- 
tance between the bonding atoms of the biden- 
tate ligand and m = r, as defined above. A general 
expression for X = f(e)* had been obtained previously 

PI' 

=4-2[1 +cos($+240)] c0s2(0(/2)/c0s2(~/2) (8) 

The use of b instead of a when studying X in our 
opinion blurs features of the trischelate complexes, 
since b is a ratio of two quantities which may or may 
not vary independently. 
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Fig. 3. Dependence of the repulsion energy coefficient X 
on the bite angle (a) and the trigonal twist angle (@) of M- 
(bidentate)s. Znrraligand repulsions are neglected. 

60 70 80 90 d 

Fig. 4. The minima of the parametric equations X = f(@& 
and X = f(a),+, denoted as (on,& and (orm&,, respectively. 
The experimental data are from refs. [l-3]. o dtc, fi acac, 
l rrop, 0 en, A dto. Solid lines have been obtained with 
intraligand repulsions included, dashed lines with intra- 
ligand repulsions neglected; those for (c#s~& in both cases 
coincide. 

Applications 

I. Effect of the Neglect of Intraligand Repulsion and 
the Choice of Empirical Potential 

When (5)-(10) are used consistently the answer 
is trivial: X is minimum* at (Y = 90’ and $I = 60’ (see 
Fig. 2). This implies that when the ligand bonding 
atoms are allowed to move freely, the minimum of 
repulsion energy is for the Oh arrangement [S] . 

For chelate complexes, however, the ligand 
atoms cannot move freely and we shall pursue this 
problem further. It has been stated: “each bonded 
bidentate ligand is sufficiently rigid that interaction 
between its donor atoms can be considered constant 
and this interaction is therefore omitted when sum- 
ming over all other donor atoms repulsions” [ 11. 

To check the general validity of this assumption, 
we have calculated X(@, cr) (see Fig. 2). The same 
calculations were repeated omitting however the 
term d14 (intraligand repulsion) in eqn. (9) (see Fig. 
3). The two Figures also show the paths of the minima 
of the parametric equations X = f(& and X = f(a)@, 
denoted as ($,& and (cY~&,, respectively. 

It is readily seen from Fig. 2 that the absolute 
minimum (the cross point of the two paths) occurs 
at the angles for the octahedron. The absolute mini- 
mum in Fig. 3, however, is outside the studied range 
(a = llO”, + = 8.5” for n = 6 and 12) and therefore 
it is of no practical interest. 

When comparing the two Figures it is seen that the 
neglect of intraligand repulsion depresses the poten- 

*Equation (10) gives the critical points. To find the abso- 
lute minimum the second derivatives have to be considered. 

tial energy sheet at the lower (Y values; further, while 
(&& is the same in both cases, ((Ymi3~ differs 
widely. 

In both cases (&&a is a shallow valley while 
(amin>@ is deep if intraligand repulsions are included 
(Fig. 2) and becomes shallower with the neglect of 
this repulsion (Fig. 3). 

To check which of the two cases under considera- 
tion describes the available experimental data [l-3 ] , 
we have plotted the (hi& and (amin)@ curves. 
For comparison we also include computational results 
with n = 1 (as in [2]), n = 6 (as in [l]) and n = 12 
(the repulsive part of the Lennard-Jones potential 
[ 1, 61). One of the (@,&a curves (n = 6) is similar 
to that in Fig. 6, ref. [ 11, where #J vs. b (= 2sin(w/(2)) 
was minimized, considering b to be parameter instead 
of variable, e.g. X(@)),. 

The important result from Fig. 4 is that for all 
points close to ($&a it is immaterial whether the 
intraligand repulsions are included or not in the REM 
calculations; both curves are coincident. However, 
the (am&+ curve with neglected intraligand repul- 
sions is widely off the experimental points. Thus, 
for the complexes whose data fall on the (amin)@ line 
(class B in Fackler’s notation [2]), the intraligand 
repulsions must be an important part of the overall 
energy change and cannot be neglected. It follows 
further that for these complexes r$ is a parameter and 
not a variable. 
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TABLE I. The Coefficients of Linear Regression y = a + b’ x, Obtained by Least-Square Procedure. IM Are Ionic Radii (2,) [9]. 

Type of Linear IegIessionb Ay COII. 
complexa 

NoC 
y=a+b’x coeff. 

M(dtc)s l/b = 0.33 f 0.06 + (0.21 * O.O3)R(ML) 0.005 10 0.986 

M(aca~)~ l/b = -0.09 * 0.16 + (0.41 ? O.lO)R(ML) 0.009 10 0.937 

M(Irop)s l/b = 0.09 + 0.22 + (0.35 + O.ll)R(ML) 0.006 4 0.978 

W&3 l/b = 0.07 * 0.13 + (0.32 + O.O6)R(ML) 0.006 4 0.942 

M(dro)s l/b = 0.05 f 0.17 + (0.30 f O.O7)R(ML) 0.004 6 0.970 

M(dIc)s R(ML) = 1.78 * 0.16 + (0.96 k0.12)rM 0.02 7 0.978 

M(acac) 3 R(ML) = 1.39 + 0.06 + (0.93 f O.lO)rI,,, 0.01 10 0.988 

M(nop)3 R(ML) = 1.34 + 0.06 -t. (1.04 f 0.09)1, 0.01 4 0.993 

M(cn)3 R(ML) = 1.42 20.06 + (0.99 +0.09)rM 0.01 4 0.993 

M(dt& l/b = 0.70 + 0.12 + (0.21 + 0.04)1, 0.006 8 0.992 

M(acac)s l/b = 0.48 ? 0.17 + (0.37 + 0.11)~~ 0.010 7 0.920 

M&-o& l/b = 0.56 k 0.17 + (0.36 +O.ll)IM 0.008 4 0.956 

M(en)s l/b = 0.59 r 0.14 + (0.30 k 0.06)rM 0.008 4 0.915 

adtc = N,N-dialkyldithiocarbamate, acac = acetylacetonate, trap = tropolonate, en = ethylenediamine, dto = dithiolate. bb and 
R(ML) taken from refs. [l-3], rM from ref. [9]. The three regressions were treated independently. ‘Points used in the calcula- 
tions. Experimental points at variance with the regression line by more than twice the sv value were rejected in the final fit. Error 
limits + st/JN, where s is the standard deviation of the slope or the intercept and t is the Student t factor. 

2. Classes of Tris-Chelate Complexes as Discerned 
from the Location on the cu-$ Curves 

It is seen from Fig. 4 that the experimental points 
for the dtc complexes fall on the (&n)a lines (o 
parametric as in the bis-dtc-complexes [7]), while 
those for the dithiolate complexes fall on the ((Y,irJe 
line (n = 12) (intraligand repulsions included, 4 para- 
metric). 

The points for the diamino(en, tren, pen) and 
acetylacetonato (acac) complexes, with few excep- 
tions (considered in detail by Kepert [ 11) are close 
to the absolute minimum, pointing out that for these 
complexes the ligand bonding atoms are not much 
hindered in assuming position around M by the pre- 
sence of a chelate ring. 

The above distinction is the same as that found by 
Fackler et al. [2] for group A (dtc, acac, en etc.) 
and group B (dithiolates) compounds (see Figs. 4 and 
6 in [2]). Interligand donor atom bonding was 
thought [2] to be the reason for the formation of a 
separate group (B) by the dithiolate complexes. 
Such a bonding would be governed to a very large 
extent by the 4 value giving the slanted ‘stacking’ 
of the ligands about the central atom. It follows from 
our discussion that intraligand repulsion is also 
important for these complexes. 

Almost constant b (1.3 1 + 0.03) and LY (82 + 2”) 
have been observed for the dithiolate complexes, 
while @ = O-SO” and 0 = 49-53” [l-3]. The cons- 

tant b (or o) values are difficult to explain. In a 
series of complexes where M differs and L is the 
same, the size of M must affect ML. To have b cons- 
tant this must be accompanied by a corresponding 
variation of L?: (intraligand). Inspection of the 
available data, however, shows that both m and 
SS are approximately constant for a large variety of 
M_ thus ruling out the possibility of parallel m and 
LL increase or decrease. It is thus obvious that the 
dto ligands are capable of accomodating M as if its 
size is of no importance. 

3. Correlations with Structure Parameters 
Some important features of the tris-bidentate 

complexes can be high lighted through correlations 
between structure parameters and with the size of 
the metal ion. 

Consider eqn. (11). The inverse is 

-- 
l/b = ML/LL 

Writing 

& = rM + rn •t C 

whence 

1 /b = rM/n + (rL t c)/iX 

(12) 

(13) 

(14) 
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TABLE II. Experimental [l-3] and Calculated Znrraligand Separation. 

33 

Series drc acac lrop dto en 

Experimental 2.87(6) 2.77(10) 2.52(2) 3.13(7) 2.77(4) 
Calculated 4.8 * 0.6 2.4 i 0.4 2.9 f 0.7 3.3 f 0.6 3.1 + 0.5 

Here rM and rL are the atomic or ionic radii of M 
and L and c is a correction to the sum of radii, 
accounting for the ionicity or the covalency of the 
bond, respectively. 

Equation (13) was written in analogy with the well 
known Schomaker-Stevenson relation [8] and it is 
expected to be a rough approximation. The bond 
lengths m reflect the oxidation and spin states of 
M. For this reason, the use of ionic radii in (13) 
offers certain advantages over the use of atomic or 
orbital radii which are independent of the oxidation 
and spin states [9]. Table I lists the linear regression 
coefficients. 

It follows from eqn. (12) that a-straight line l/b 
vs. R(ML) should be obtained if LL is constant or 
its variation is statistically insignificant for the entire 
series under consideration. Furthermore, the inter- 
cept should be zero. Table I shows that these require- 
ments are met by all series with the exception of the 
dtc’s. The n values calculated from the slope coeff- 
cients are compared with the experimental ones 
in Table II. 

It is seen that with the exception of the_dtc com- 
plexes, the experimental and calculated LL values 
are in fair agreement. This is not the case with the 
dtc complexes where variations of E with m was 
statistically proved to be significant: % = 1.72 + 
0.21 + (0.48 f O.O~~ti, r = 0.949. Hence the intro- 
ligand separation SS in the dtc complexes changes 
upon coordination so as to accomodate the central 
ion, thus giving rise to a non-zero intercept and 
lower slope of the l/b vs. R(ML) curve. E and m 
were proved statistically to be independent of each 
other for the other complexes. 

The second correlation R(ML) vs. rM checks the 
validity of eqn. (13). The multipliers of rM should 
be unit. Table I shows that this is the case. The 
intercepts follow the ligand’s bonding atom covalency 
series (S > N “> 0) [lo] . 

The third correlation was obtained by treating 
l/b vs. rM. It can be obtained also as a sum of eqns. 
(12) and (13), and in fact adding (12) and (13) the 
third correlation is obtained within the error limits. 
The slope parameters of the first and third correla- 
tions should be the same. It is gratifying to see that 
this is approximately so. Since the two correlation 
equations were obtained by treating independently 
I/b vs. R(ML) and I/b vs. rM, the arguments being 
R(ML) and rM, respectively this finding lends sup- 
port to the assumptions implicit in eqn. (14). 
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