Sulphur-Nitrogen Compounds.

VII*. Electron Spin Resonance and Nitrogen-l 5 Nuclear Magnetic Resonance Observations on the Formation and Structure of Tris(arylsulphonyl)hydroxyl amines

ROBERT A. DAVIE and CHRISTOPHER GLIDEWELL** *Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.* Received June 3.1980

Samples of $(ArSO₂)₃NO$ prepared by non-oxida*tive methods do not exhibit ESR spectra in solution: the observation of (ArSO,)zNO' ESR spectra in* samples of $(ArSO₂)₃NO$ prepared oxidatively shows *therefore that the (ArSO,),NO' are guenine residual intermediates from the oxidation of (ArSO₂)₂NOH.* ¹⁵N chemical shifts of arylsulphonamides and aryl*sulphonylhydroxylamines show that the product of oxidation of* $(ArSO₂)₂NOH$ *is an N,N,O trisubstituted hydroxylamine (ArSO₂)₂NOSO₂Ar, rather than* an N,N,N trisubstituted amine oxide $(ArSO₂)₂N-\overline{O}$.

Introduction

The oxidation of N,N-bis(arylsulphonyl)hydroxylamines, $(ArSO_2)_2NOH$ $(Ar = 4-XC_6H_4; X = H, F, Cl,$ CH3, CH30), yields [2] products of composition $(AsO₂)₃NO$ by a route thought to involve successive formation of the radicals $(Arg₂)₂NO'$ and ArSO;. Apparently analytically pure samples of $(ArSO₂)₃NO$, for $X = H$, F, Cl, CH₃, but not CH₃O, give [3] in benzene solution ESR signals characteristic of the aminyl oxides $(AsO₂)₂NO$, even though the same solutions give sharp well resolved NMR spectra. The aminyl oxide radicals could arise either as an intermediate in the oxidative conversion of $(AsO₂)₂NOH$ to $(AsO₂)₃NO$, or by spontaneous homolysis of $(ArSO₂)₃NO$ in solution.

The NMR spectra of $(ArSO₂)₃NO$ indicate the presence of two types of ring $(^1H, X = CH_3O; ^{19}F,$ $X = F$; ¹³C, $X = F$, Cl, CH₃CH₃O) but the spectra of $(ArSO₂)₂NOH$ indicate only a single ring environment.

The present paper represents ESR evidence which effectively rules out the possibility of spontaneous homolysis of $(ArSO₂)₃NO$, and a ¹⁵N NMR study of $(ArSO₂)_nNH_{3-n}$, ArSO₂NHOH, $(ArSO₂)₂NOH$ and

 $(ArSO₂)₃NOH$ for $X = CH₃$, which unambiguously shows that the product of oxidation of $(ArSO₂)₂$. NOH is $(ARSO₂)₂ NOSO₂Ar rather than the amine$ oxide $(ArSO₂)₃N₋O.$

Experimental

Literature methods were used for the preparation of $(CH_3C_6H_4SO_2)_2NH$ [4], $(CH_3C_6H_4SO_2)_3N$ [5], $CH_3C_6H_4SO_2NHOH$ (CH₃C₆H₄SO₂)₂NOH [2], $(C_6H_5SO_2)_3NO$ [2], $(CH_3C_6H_4SO_2)_3NO$ [2] and $(CH_3SO_2)_2$ NH $[6]$. ¹⁵N NMR spectra were recorded at P.C.M.U., Harwell, using a Bruker WH-180 FT spectrometer operating at 18.24 MHz: the chemical shifts recorded in Table I are for solutions approximately 0.2 M in DMSO, and are referred to external $CH₃¹⁵NO₂$. Chemical shift differences on change of solvent, e.g. to acetone were usually no more than ± 1 ppm; broad-band ungated proton decoupling was employed throughout. ESR spectra were recorded using a Decca X-3 spectrometer.

Results and Discussion

ESR Spectra

The compounds $(AsO₂)₃NO$ can be prepared not only by oxidation of $(ArSO₂)₂NOH$, but also [2] by reaction of $(AsO₂)₂NOH$ with ArSO₂Cl in the presence of base, equation (1):

$$
(ArSO2)2NOH + ArSO2Cl + B \rightarrow
$$

$$
B \cdot HCl + (ArSO2)3NO \qquad (1)
$$

Samples prepared by this route, for $X = H$, CH₃ gave no detectable ESR spectra, even at the detection limits of the spectrometer, under conditions identical with those in which samples prepared by oxidation gave extremely strong spectra. We therefore conclude that no spontaneous homolysis of

^{*}Part VI, Ref. 1.

^{**}Author to whom all correspondence should be addressed.

TABLE I.¹⁵N Chemical Shifts (ppm) for Tolylsulphonamides and Tolylsulphonylhydroxylamines.

$CH_3C_6H_4SO_2NH_2$	-284.5	$CH_3C_6H_4SO_2NHOH$	-226.1
$(CH_3C_6H_4SO_2)_2NH$	-220.9	$(CH_3C_6H_4SO_2)_2NOH$	-170.9
$(CH_3C_6H_4SO_2)_3N$	-159.8	$(CH_3C_6H_4SO_2)_3NO$	-143.0

TABLE II. Other Sulphonamide ¹⁵N Chemical Shifts (ppm).

 $a_{\text{Ref. 7.}}$ b_{Ref. 8.}

 $(ArSO₂)₃NO$ occurs in solution to yield $(ArSO₂)₂$. NO', but that when radicals $(ArSO₂)₂NO'$ are present in samples of $(ArSO₂)₃NO [3]$, they are residual intermediates from the oxidation process. This direct observation of a genuine intermediate is strong evidence for the correctness of the reaction scheme put forward earlier [2,3].

"N NMR Spectra

Chemical shifts of tolylsulphonylamides and tolylsulphonylhydroxylamines are recorded in Table I, and a number of other relevant shifts for related compounds are given in Table II.

The chemical shift of ammonia is -380.2 ppm [9] and successive introduction of sulphonyl groups, whether neutral or anionic, aliphatic or aromatic, induces paramagnetic shifts of *ca.* 100 ppm, 60 ppm, and 60 ppm: the contrast between this behaviour and that of successive carbon substitution at nitrogen has been noted previously [7].

The chemical shift of unprotonated hydroxylamine, $NH₂OH$ appears to be unknown. Values recorded for the corresponding cation, $NH₃OH[*]$, are -276 ppm (¹⁴N shift) [10], and -293 ppm [11]: the difference between these values arises from differences in concentration, solvent, or referencing. In general protonation of aliphatic amines causes a downfield shift of *ca. IO* ppm [12], so that a value of -275 ppm will probably not be greatly in error for the shift in $NH₂OH$: as with $NH₃$, successive introduction of two sulphonyl groups causes paramagnetic shifts, each of *ca 50* ppm, and it is necessary to consider the difference in the chemical shifts expected, on the one hand for an N,N,O-tris(arylsulphonyl)hydroxylamine, $(ArSO₂)₂NOSO₂Ar$ and on the other hand for an N,N,N-tris(arylsulphonyl) amine oxide $(ArSO₂)₃NO$.

Oxidation of $(ArSO₂)₃N$ to the amine oxide $(ArSO₂)₃NO$ is expected, via the local paramagnetic

term to lead to a marked shielding of $15N$ nucleus, and a consequent marked upfield chemical shift. The strong deshielding of the nitrogen nucleus on introduction of sulphonyl groups may be a consequence [13] both of the presence of many low lying excited states, (resulting from the presence of sulphur 3d orbitals) and of multiple bonding involving the nitrogen lone pair, thus:

 $ArSO₂$ is certainly a deactivating group in electrophilic aromatic substitution [14], and evidence for such $N-S$ π -interactions can be derived from the structures of a number of ions and molecules. N-S π -interactions will be maximised when the nitrogen atom is planar: planar nitrogen is found in, for example HN(SO₃)₂² [15], ON(SO₃)₂² [16], $N(SO₃)₃⁻³$ [17], $(CH₃SO₂)₂NH$ [18] and $(PhSO₂)₂$ -NH [19]: Glemser has suggested [20] a bond lengthbond order correlation for sulphur-nitrogen bonds which yields bond orders as follows, based on experinentally determined bond distances: $H N(SO_3)_2^{-2}$ $[15]$, 1.08; $ON(SO_3)^{-2}$ [16], 1.08; $N(SO_3)^{-3}$ [17], 0.90; $(CH_3SO_2)_2NH$ [18], 1.14; $(PhSO_2)_2NH$ [19], 1.12; PhSO₂NC₉H₁₆O [21], 1.18; CH₃C₆H₄SO₂-NHCH₂Ph [22], 1.25; and $(PhSO₂)₂N$ ⁻ [19], 1.42. These data fully support the occurrence of multiple N-S bonding in sulphonamide species, and indicate that when the lone pair of electron on nitrogen is removed by quaternisation, e.g. on oxidation, a substantial upfield shift is expected. Some examples of such shifts in various classes of compound are given in Table III: even taking the minimum value of those recorded this would give a chemical shift for the amine oxide $(AsO₂)₃NO$ at least as negative

TABLE III. ¹⁵N Shifts (ppm) on Oxidation of Nitrogen Atoms.

Molecule, X	$\Delta \delta^{\mathbf{a}}$
NO ₂	-232
PhNO	-541
BuONO	-235
PhCN	-49
C_5H_5N	-25
PhNNPh	-172
PhCHNPh	-40

 $A_{\Delta\delta}$ = δN (XO) - δN (X) resulting from the oxidation of X to X0: source, ref. 13.

as -185 ppm; the shift is possibly substantially more negative.

The alternative formulation $(Arg₂)₂NOSO₂Ar$ results from a substitution of H by SO_2Ar in (Ar- $SO₂$)₂NOH: since by analogy with (PhSO₂)₂NH [19] and $ON(SO₃)₂⁻²$ [16], the nitrogen atom in (Ar- $SO₂$ ₂NOH is expected [2] to be planar, no significant change occurs on substitution at oxygen other than replacement of the electroneutral hydrogen atom by the strongly electron withdrawing $ArSO₂$ group. Hence the principal effect on the ¹⁵N chemical shift of this substitution is via the local diamagnetic term, and in this example, a marked downfield shift is expected, from the value of -171 ppm observed in $(ArSO₂)₂NOH.$

Since the expected values of $\delta(N)$ for $(ArgO_2)_3$. NO and $(ArSO₂)₂NOSO₂Ar respectively fall on either$ side of the value in $(ArSO₂)₂NOH$, a structural distinction can readily be made on the basis of the observed shift, -143 ppm, which shows clearly that the correct constitution is $(Arg₂)₂NOSO₂Ar$. This deduction, based on direct NMR observation of the crucial atom, nitrogen, is in accord with deductions made from observations of nuclei $(^1H, ^{13}C, ^{19}F)$ only indirectly influenced by the configuration at nitrogen.

Acknowledgement'

We thank S.R.C. for an allocation of $15N$ spectrometer time at P.C.M.U., Harwell.

References

- Part VI; A. R. Butler and C. Glidewell, *J. Chem. Research, (S)239, (M)3201(1978).*
- J. D. Birchall and C. Glidewell, J. Chem. Soc. Dalton, 10 (1977).
- 3 J. D. Birchall and C. Glidewell. J. *Chem. Sot. Dalton,* 604 (1978).
- 4 N. N. Dykhanov, *Zhur. Obsh. Khim., 29, 3602* (1959).
- 5 H. Stetter and H. Hansmann, *Chem. Ber., 90, 2728* (1957).
- 6 B. Helferich and H. Flechsig, C'hem. *Ber.,* 75, 532 (1942).
- 7 N. Naulet, G. J. Martin, J.-J. Barieux, and J.-F. 7 Combroux, *J. Chem. Research*, (S)158 (1980).
- I. I. Schuster, S. H. Doss, and J. D. Roberts, J. Org. *Chem., 43.4653* (1978).
- P. R. Srinivasan and R. L. Lichter, *J. Magn. Resonance*, 28, 227 (1977).
- 0 D. Herbison-Evans and R. E. Richards, *Mol. Phys.*, 8, 19 (1964).
- 11 M. Witanowski and H. Januszewski, *Can. J. Chem., 47,* 1321(1969).
- 12 R. 0. Duthaler and J. D. Roberts. *J. Am. Chem. Sot.,* **100,** 3889 (1978).
- 13 G. C. Levy and R. L. Lichter, 'Nitrogen-15 Nuclear Magnetic Resonance Spectroscopy', Wiley-Interscience, New York (1979).
- 14 H. H. Jaffe, *Chem. Rev., 53,* 191(1953).
- 15 D. W. J. Cruickshank and D. W. Jones, *Acta Cryst., 16, 887* (1963).
- 16 R. A. Howie, L. S. D. Glasser, and W. Moser, J. *Chem. Sot. A, 3043* (1968).
- 17 J. V. Tillak and C. H. L. Kemuud, *J. Chem. Sot. A, 1637* (1970).
- 18 R. Attig and D. Mootz, *Acta Cryst., B31, 1212* (1975).
- 19 F. A. Cotton and P. F. Stokely, J. *Am. Chem. Sot., 92, 294* (1970).
- 20 O. Glemser, A. Müller, D. Böhler and B. Krebs, Z. *Anorg. Chem., 357, 184* (1968).
- 21 S. Sato. T. Yoshioka and C. Tamura, *Acta Cryst., 831,* 1385 (i975).
- 22 T. S. Cameron, K. Prout. B. Denton. R. Spagna and E. White,J. *Chem: Sot. Perkin II, 176 (1975).*