Synthesis of Iron(II) Phosphite Complexes

S. D. ITTEL*, A. D. ENGLISH, C. A. TOLMAN and J. P. JESSON

E. I. Du Pont de Nemours and Company, Central Research and Development, Department**, Experimental Station, Wilmington, Del. 19898, U.S.A.

Received August 11, 1978

The cationic iron(II) complexes, $[Fe(P(OR)_3)_5X]^*$, have been prepared by reactions involving oxidation of $Fe(P(OR)_3)_5$ (for X = H, Me, CF_3) or addition of phosphites to iron bis(tetrahydrofuran) dihalide complexes (for X = Cl, Br, I). This latter reaction proceeds, under different conditions, through two distinctly different isolable species, both of which have the formulation $Fe(P(OR)_3)_3X_2$. The complexes have been characterized by spectroscopic techniques including simulation of the $^{31}P\{^{1}H\}$ NMR spectra.

Introduction

Divalent iron complexes of alkyl and aryl phosphine ligands have been studied in some detail [1]. Relatively less attention has been devoted to the trialkyl and triaryl phosphite complexes [2]. This has been due in part to the susceptibility of the ligands to hydrolysis and Arbuzov rearrangement. On the other hand their appreciably stronger π -acceptor properties and decreased steric requirements [3] make their study of considerable interst. In an investigation of the chemistry of the zerovalent species, Fe(P(OMe)₃)₅ [4-6], a number of complexes of the type [Fe(P(OMe)₃)₅X] [Y] were encountered. A systematic study of these divalent species was undertaken, including a detailed investigation of their 31P nmr properties. The results of the study are reported here.

Results and Discussion

Reaction of Phosphites with Iron(II) Halides

The preparations of $Fe(THF)_2Cl_2$ [7], 1, (THF = tetrahydrofuran) and $Fe(THF)_{1.5}Cl_2$ [8] have been reported previously. We have prepared $Fe(THF)_2X_2$ where X = Br, 2 and I, 3, by Soxhlet extraction of the anhydrous ferrous halides with THF. Attempted preparation of the dichloro species by the same technique gave variable results which were dependent

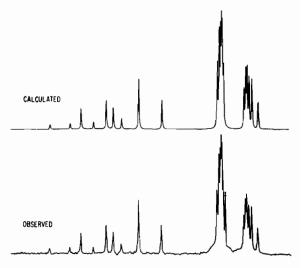


Figure 1. Calculated and observed ${}^{3i}P\{{}^{4}H\}$ NMR spectra for $[Fe(P(OMe)_3)_5Cl][BPh_4]$.

on the source (presumably the purity) of the $FeCl_2$ and the reaction conditions. Analyses varied between 1.5 and 2 molecules of THF per metal but the composition of the solvated dichloride seemed to have no effect upon subsequent reactions. All three solvated dihalides were similar in appearance to the diaquo complex $Fe(H_2O)_2Cl_2$.

The reaction of Fe(THF)₂X₂ species with alkyl phosphites, P, proceeds through a complicated series of equilibria, 1a-1e. The four- and five-coordinate species are paramagnetic while the six-coordinate species are diamagnetic. Useful information about these equilibria can be

$$Fe(THF)_2X_2 \xrightarrow{P} FeP_3X_2$$
 (1a)

$$\operatorname{FeP_3X_2} = \operatorname{[FeP_3X]}^+X^-$$
 (1b)

$$FeP_3X_2 \xrightarrow{P} FeP_4X_2$$
 (1c)

$$FeP_4X_2 \xrightarrow{P} [FeP_5X]X$$
 (1d)

$$[FeP_5X]X \xrightarrow{P} [FeP_6]X_2$$
 (1e)

^{*}Author to whom correspondence should be addressed.

^{**}Contribution No. 2590.

TABLE I. 31P{1H} NMR Data for Selected Iron Phosphite Complexes.c

	δA (ppm)	δB ₄ (ppm)	J _{AB} Hz 82.5	
[Fe(P(OMe) ₃) ₅ H] ⁺	166.4	169.7		
[Fe(P(OMe) ₃) ₅ Me] ⁺	167.9	168.9	79.5	
$[Fe(P(OMe)_3)_5CH_3CN]^{2+}$	156.4	149.4	130	
[Fe(P(OMe) ₃) ₅ Cl]*	163.4	149.3	126	
[Fe(P(OMe) ₃) ₅ Br] ⁺	165.2	151.2	124	
$[Fe(P(OMe)_3)_5I]^+$	174.0	154.5	124	
[Fe(P(OMe) 3)6] ²⁺	150.8	_	_	
[Fe(P(OEt) ₃) ₅ H] ⁺	161.8	164.4	93	
[Fe(P(OEt) ₃) ₅ Cl] ⁺	159.6	145.0	125	
[Fe(P(OEt) ₃) ₅ Br] ⁺	161.0	146.0	124	
[Fe(P(OEt) ₃) ₅ I] ⁺	170.0	151.0	123	
Trans-Fe(P(OMe) ₃) ₄ Cl ₂	157.3	_	***	
Trans-Fe(P(OMe) ₃) ₄ Br ₂	157.8	_	_	
Cis-FeP(OEt)3)4H2	183.1 ^a	185.3	56	
Fe(P(OMe) ₃) ₅	187.8 ^b	176.4	145	
Fe(P)(OEt) ₃) ₅	180.9 ^b	171.1	144.5	

^aA₂B₂ spin system, recorded in toluene-d₈. ^bA₂B₃ spin systems, recorded in pentane. ^cRecorded in CH₂Cl₂.

obtained by ³¹P NMR. For example, the reaction of 1 with P(OMe)₃ in methylene chloride yields the characteristic spectrum (AB₄ spin system) (see Table I and Figure 1) of [Fe(P(OMe)₃)₅Cl]⁺, 4, even at low concentrations of phosphite (Fe:P = 1:1-3). No other diamagnetic species are observed at room

$$\begin{bmatrix} Cl & P(OMe)_3 \\ Fe & P(OMe)_3 \\ MeO)_3P & P(OMe)_3 \\ P(OMe)_3 \end{bmatrix}^+$$

temperature, but if the temperature is lowered to -80 °C, an additional single line appears at 157.3 ppm. This species, thought to be trans-Fe(P(OMe)₃)₄-Cl₂, 5, is presumably in fast exchange with a paramagnetic species at room temperature according to equation (1c) and is therefore unobserved. At higher concentrations of phosphite (Fe:P = 1:5-10) the spectrum is unchanged at room temperature, but at low temperature the singlet at 157.3 ppm is reduced in relative intensity and free phosphite begins to appear at 140 ppm. In the presence of a large excess of phosphite, at room temperature a very broad resonance appears below 140 ppm, shifting towards 140 ppm and sharpening as the excess is increased. This is again consistent with the rapid exchange process given by equation 1c. Similar results are obtained

with other phosphite ligands and halides. The spectroscopic parameters are listed in Table I.

Attempted isolation of products from the FeCl₂/ P(OMe)₃/THF system points out some of the other equilibria listed in equations (1a-1e). At low concentrations of phosphite $[Fe:P(OMe)_3 = 1:3]$ it is possible to isolate Fe(THF)2Cl2 from solution according to the reverse of equation 1a. When phosphite is used in large excess, the only products isolated are of the formula Fe(P(OMe)₃)₃Cl₂. Two distinct forms of the vellow crystalline solid could be obtained (equation (1b)), but the variables which determined which form would be prepared in any given reaction were not ascertained. At times the FeP3X2 would remain in solution in THF, and addition of ether precipitated a highly crystalline material having a relatively low melting point. On other occasions, the FeP₃X₂ would precipitate spontaneously as a powder which would not melt up to 300 °C. These two species were indistinguishable in solution, displaying the behavior described above for Fe:P = 1:3. No definitive information on their structures was obtained. The low-melting form is presumably the five-coordinate molecular species. The less soluble non-melting form could be an ionic species, [Fe(P(OMe)₃)₃Cl] [Cl], or a chlorine-bridged oligomer. The latter possibility is deemed to be unlikely because there was no evidence for bridging in solution; bridging would yield six coordination and the complexes should be diamagnetic.

Attempts to isolate [Fe(P(OMe)₃)₅Cl] [Cl] from the FeCl₂/P(OMe)₃/THF system were unsuccessful even though it was apparent from $^{31}P\{^1H\}$ NMR

Fe(II) Phosphite Complexes

TABLE II. Melting Points and Analyses for Selected Iron Complexes.

Complex	M.P. (°C)	Analyses					
		Carbon		Hydrogen		Phosphorus	
		Calc.	Obs.	Calc.	Obs.	Calc.	Obs.
Fe(THF) ₂ Cl ₂	>300	35.5	35–25	5.9	6–5	26.2	26–30 (C1)
Fe(THF) ₂ Br ₂	>300	26.7	26.5	4.5	4.5	44.4	44.8 (Br)
Fe(THF) ₂ l ₂	>300	21.2	21.3	3.5	3.8	55.9	54.9 (I)
Fe(P(OMe) ₃) ₃ Cl ₂	>300	21.7	21.4	5.5	5.4	18.6	18.9
Fe(P(OMe) ₃) ₃ Cl ₂	150	21.7	21.2	5.5	5.4	18.6	19.9
Fe(P(OMe) ₃) ₃ Br ₂	>300	19.3	18.9	4.9	4.8	16.6	16.7
Fe(P(OMe) ₃) ₃ Br ₂	175	19.3	19.3	4.9	4.9	16.6	16.4
Fe(P(OEt) ₃) ₃ Cl ₂	>300	34.6	34.2	7.3	7.3	14.9	14.1
Fe(P(OEt) ₃) ₃ Cl ₂	79	34.6	34.2	7.3	7.0	14.9	13.8
Fe(P(OEt) ₃) ₃ Br ₂	>300	30.3	30.3	6.4	6.3	13.0	13.5
Fe(P(OEt) ₃) ₃ Br ₂	92	30.3	30.6	6.4	6.7	13.0	12.8
Fe(P(OMe) ₂ Ph) ₃ Cl ₂	91	45.2	44.8	5.2	4.8	14.6	14.8
Fe(P(OCH ₂) ₃ CEt) ₃ CI ₂	104	35.3	35.6	5.4	5.7	15.5	15.6
Fe(P(OCH ₂) ₃ CEt) ₃ Br ₂	135	30.8	30.5	4.7	4.8	13.2	13.4
[Fe(P(OMe) ₃) ₅ Cl] [BPh ₄]	130	45.4	45.3	6.4	6.1	15.0	14.6
$[Fe(P(OMe)_3)_5Br][BPh_4]$	182	43.6	43.9	6.1	5.8	14.4	14.6
$[Fe(P(OMe)_3)_5 I] [BPh_4]$	174	41.7	41.4	5.8	5.8	13.7	13.2
[Fe(P(OMe) ₃) ₅ H][PF ₆]	255	21.9	21.4	5.6	5.5	22.6	22.4
$[Fe(P(OMe)_3)_5Me][BPh_4]$	143	47.6	47.3	6.8	6.7	15.3	16.2
$[Fe(P(OMe)_3)_5CH_3CN][SbF_6]_2$	Dec.	17.2	17.3	4.0	4.0	13.0	13.7
$[Fe(P(OEt)_3)_5Cl][BPh_4]$	101	52.2	51.9	7.7	7.5	12.5	12.4
[Fe(P(OEt) ₃) ₅ Br][BPh ₄]	102	50.5	50.2	7.5	7.3	12.1	12.0
[Fe(P(OEt) ₃) ₅ I][BPh ₄]	124	48.7	48.7	7.2	7.0	11.6	11.7
[Fe(P(OEt) ₃) ₅ H][BF ₄]	244	37.0	36.5	7.8	7.3	15.9	15.9
[Fe(P(OMe) ₃) ₆] [BPh ₄] ₂	280	55.1	54.2	6.6	6.5	12.9	13.8

experiments that it exists in very appreciable concentrations in solution. This difficulty was overcome by running the reaction in methanol instead of THF. Addition of tetraphenylborate, BPh₄, to the methanolic solution of FeCl₂ and P(OMe)₃ precipitated the highly crystalline yellow product [Fe(P(OMe)₃)₅Cl] [BPh₄]. Once the cationic product has been isolated it is stable to redissolution in THF or other solvents; there is no dissociation of phosphite ligand in the absence of a second halide to fill the vacant coordination site.

Under somewhat more extreme conditions, it is possible to replace the second chloride ion by phosphite yielding the species, [Fe(P(OMe)₃)₆]⁺⁺. This is best accomplished by forcing equation (1e) to the right by precipitation of the dication with a similar sized diamion,

Similar reactions can be carried out using other phosphites or halides. The spectral parameters are listed in Table I, and the physical properties are listed in Table II.

Preparation and Reactions of Fe(P(OR)₃)₅ Complexes

The FeP_3X_2 complexes can be reduced with sodium amalgam in the presence of excess phosphite (presumably in the form of $[FeP_5X][X]$) to give the zerovalent five coordinate species FeP_5 ($P=P(OMe)_3$ [4-6, 9, 10] and $P(OEt)_3$) [4-6]). The reaction is best accomplished with X=Br [10], but satisfactory results are also obtained with X=Cl and I. The fluxional nature of this five coordinate species has been detailed elsewhere [4, 5]. We have found these zerovalent species to be exceptionally electron rich, an aspect displayed throughout their chemistry.

When $Fe(P(OMe)_3)_5$ is dissolved in methanol, it exists to a slight degree in the protonated form $[Fe(P(OMe)_3)_5H]^+$, according to equation (2).

$$Fe(P(OMe)_3)_5 + MeOH \Longrightarrow$$

$$[Fe(P(OMe)_3)_5H]^+ + [OMe]^- \qquad (2)$$

This reaction implies a pK_A of ~19 for the protonated form. This should be compared with Ni(P- $(OMe)_3$)₄ which requires the relatively strong acid system, H₂SO₄ in methanol, to carry out the protonation. The hydride can be isolated by use of a stronger acid such as NH₄ and a suitable counterion such as BF₄ or BPh₄. The protonation has even been carried out using a β -diketone [12].

Reaction of Fe(P(OMe)₃)₅ with methyl iodide or [Me₃O] [BF₄] gives the cation [Fe(P(OMe)₃)₅Me]⁺. The methyl resonance is observed as a quintet above TMS due to coupling with the four equatorial phosphites. The coupling to the *trans* axial phosphite is small.

Mixing of FeP(OMe)₃)₅ with CF₃I led to an unexpectedly rapid reaction, precipitating yellow-green solids from ether. A methanol solution of the precipitated material displayed two weak ¹⁹F resonances having phosphorus coupling attributable to

$$(MeO)_{3}P \begin{picture}(MeO)_{3}P \begi$$

 $(-11.6 \text{ ppm, quintet, } J_{PF} = 52.5 \text{ Hz})$ and

$$\begin{bmatrix} (MeO)_3P \middle| P(OMe)_3 \\ Fe \\ (MeO)_3P \middle| P(OMe)_3 \\ P(OMe)_3 \end{bmatrix}$$

(-80.8 ppm, doublet of quintets, $J_{PF} = 79.5$ and 52.5 Hz). The ³¹P NMR spectrum showed that the major product was $[Fe(P(OMe)_3)_5I]^+$ with a few minor impurities. The yield of the iodo complex increased as the quantity of CF_3I was increased from one to two equivalents. Thus reaction with CF_3I is not a suitable route to the CF_3 complex.

A similar rapid reaction was observed with excess CFCl₃, giving [Fe(P(OMe)₃)₅Cl]⁺ in good yield. The volatile components of this reaction were analyzed by G.C./M.S. and found to be CH₃Cl, FClC=CFCl, CFCl₂CH₃, CHFCl₂ and P(OMe)₂F in addition to the solvent, CFCl₃, and free phosphite. These products are consistent with rapid electron transfer from the zerovalent iron complex to CFCl₃ to yield ultimately CFCl₂ and Cl⁻. Subsequent dissociation of Cl⁻ from the carbanion yields another Cl⁻ and :CFCl which can attack phosphite or dimerize to give olefin. It is not clear whether the initial reaction involves one-or two-electron transfer, but the remarkable dif-

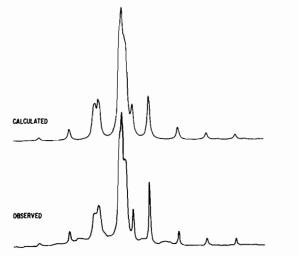


Figure 2. Calculated and observed ³¹P{¹H} NMR spectra for [Fe(P(OMe)₃)₅ H] [PF₆].

ference between the CF₃I and CH₃I reactions is presumably a result of the high electron capture cross section of fluorohalocarbons.

Another indication of the high electron density on the metal center in Fe(P(OMe)₃)₅ is a variety of facile one electron oxidations. Silver(I) or tropylium salts react with Fe(P(OMe)₃)₅ in acetonitrile to give [Fe(P(OMe)₃)₅(CH₃CN)]²⁺ through two consecutive one electron transfers. Attempts to prepare a nonsolvated five-coordinate Fe(II) species were unsuccessful because of disproportionation to [Fe(P-(OMe)₃)₆]²⁺ and other unknown species. Reaction of Fe(P(OMe)₃)₅ with tetracyanoethylene (TCNE) yields [13] oxidized iron species and the radical anion TCNE⁺ in reactions similar to those observed in the bis(diphenylphosphino)ethane iron system [14].

NMR Characterization of [FeP₅X]⁺ Species

The $^{31}P\{^{1}H\}$ NMR spectra for all of the $[FeP_5X]^{+}$ species were complex non-first order patterns. Simulation of the spectra was essential to their identification as arising from AB_4 spin systems, and to qualitative assessment of compound purity. The pattern for any given spectrum is determined by a single ratio, J/δ . Preliminary assignments of spectral parameters were made by comparison with a computer generated library of calculated spectra over a wide range of J/δ . Final parameters were then obtained by direct trial and error overlay of observed and calculated spectra. Representative spectra are presented in Figures 1–4 to aid in the identification of these products.

The spectral parameters of the AB₄ spin systems do not clearly correlate with any conventional measure of steric or electronic effects. The coupling constants might seem to vary inversely with the steric size of the sixth substituent, but acetonitrile has a smaller cone angle than any of the halides [3].

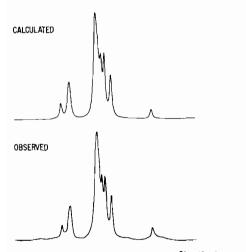


Figure 3. Calculated and observed $^{31}P\{^{1}H\}$ NMR spectra for $[Fe(P(OMe)_{3})_{5}Me][BPh_{4}]$.

J_{A-B} is largest for the complexes having a readily dissociable sixth ligand so it may well be related to the strength of the bond to the sixth ligand.

Experimental

All reactions were carried out in the nitrogen atmosphere of a Vacuum Atmospheres dry box using standard procedures. Tetrahydrofuran was distilled under argon from sodium/benzophenone just prior to use. All other solvents were dried over molecular sieves and purged with nitrogen. Anhydrous ferrous chloride was prepared by the literature technique and found to be superior to commercially available material. All other reagents were commercially available and used without further purification. The preparation of Fe(P(OMe)₃)₅ is described elsewhere [10].

³¹P{¹H} Fourier mode NMR spectra (36.43 MHz) were recorded using 10-mm tubes on a Bruker HFX-90 spectrometer. Proton and ¹⁹F NMR spectra were recorded in the CW mode on Varian HRS6-IX-VFT 220/300 and XL-100 spectrometers respectively. Field desorption mass spectra were recorded on a CEC-21-110B spectrometer using a technique described elsewhere [15]. GC mass spectra were run on a Du Pont 21-490 GCMS using a UCON-LLB-550x column held at 85 °C for 12 minutes and programmed 6°/minute to 150 °C. Analyses were carried out in our microanalytical facilities. Melting points are uncorrected.

Dibromobis(tetrahydrofuran)iron(II)

A Soxhlet extractor was set up under N₂ and charged with FeBr₂ (100 g, 0.46 mol). The FeBr₂

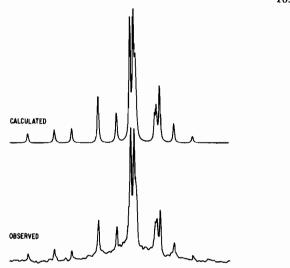


Figure 4. Calculated and observed ³¹P {¹H} NMR spectra for [Fe(P(OMe)₃)₅(CH₃CN)] [SbF₆]₂.

was extracted with THF to yield an orange solution. As the extraction continued, large crystals formed. After 12 hours, all the FeBr₂ had been extracted. The extract was cooled and filtered yielding large white flaky crystals which were washed with ether and dried under vacuum. Yield = 150 g, 90%. Under prolonged storage, the white material begins to turn orange because of loss of THF. The color can be removed by recrystallization from THF.

Dichlorobis(tetrahydrofuran)iron(II)

An analogous procedure gave the dichloro complex in 50 to 80% yield dependent on the source and history of the starting material.

Preparation of Two Forms of FeL₃X₂ Complexes

In preparing the FeL₃X₂ complexes it was observed that two distinct forms with the same composition could be isolated. The only difference established between the two is their melting points. One class melts around 100 °C and the other does not melt up to 300 °C. The first is assumed to be the five-coordinate molecular complex, FeL₃X₂. The second is presumably the four-coordinate cationic species [FeL₃X]⁺X⁻. These complexes have not been further characterized. Typical preparations of the two species are given.

Preparation of low melting $Fe(P(OEt)_3)_3Br_2$

Fe(THF)₂Br₂ was suspended in toluene and P(OEt)₃ was added until all material went into solution. Then a small amount of ether was introduced followed by addition of pentane. The pentane was added very slowly and a flocculent precipitate appeared. Addition was continued until the fine fibrous crystals were very dense. Evaporation of a small quantity of the pentane dropped the temper-

ature of the solution and more product crystallized. The product was collected by vacuum filtration and was washed with pentane before drying under vacuum. This material is benzene soluble.

Preparation of high melting Fe(P(OMe)₃)₃Cl₂

A suspension of FeCl₂ (2.54 g, 20 mmol) in THF (100 ml) was refluxed for 3 hours with P(OMe)₃ (9.4 ml, 80 mmol). The mixture was filtered hot to remove unreacted FeCl₂ and cooled to room temperature. The bright yellow crystals which precipitated were filtered and dried under vacuum.

$[Fe(P(OMe)_3)_5Cl][BPh_4]$

A solution of Fe(P(OMe)₃)₃Cl₂ (low-melting form) (3.0 g, 6.0 mmol) in methanol (40 ml) was reacted with excess P(OMe)₃ (2 ml, 16 mmol). A methanol solution of NaBPh₄ (2.06 g, 6 mmol) was then added. Large, yellow, platelike crystals usually began to precipitate before the addition was complete. Stirring was continued for 10 minutes and the product was then collected by vacuum filtration, washed with methanol and ether, and dried under vacuum. A final recrystallization from acetone/methanol was used to obtain analytically pure material.

Preparation of $[Fe(P(OMe)_3)_5H][PF_6]$

A solution of Fe[P(OMe)₃]₅ (2.03 g, 3.0 mmol) in methanol was reacted with a methanol solution of NH₄PF₆. The yellow iron solution lightened and was almost decolorized during this process. The solution was reduced in volume, and slow addition of ether precipitated a white crystalline product. The crystals were collected by vacuum filtration and dried under vacuum. M.P. >265 °C.

The ¹H spectrum consists of a single broad phosphite resonance at $\tau = 6.36$ and a hydride resonance consisting of the X part of an AB₄X spectrum at $\dot{\tau} = 22.7$. J_{HPA} = 25 Hz, J_{HPB} = 55 Hz. F.D.M.S.: Calcd. for FeP₅O₁₅C₁₅H⁺₄₆: 677; obs: 677.

Preparation of $[Fe(P(OMe)_3)_5Me][BPh_4]$

A solution of Fe(P(OMe)₃)₅ (2.03 g, 3.0 mmol) in THF was stirred with a threefold excess of MeI for several days. The solution turned from yellow to yellow green. Addition of a stoichiometric quantity of NaBPh₄ followed by very slow addition of ether precipitated a white crystalline compound which was collected by vacuum filtration. M.P.: >265 °C.

The methyl proton resonance was observed at -0.17 ppm (above TMS) as the X_3 part of an AB_4X_3 spectrum (Quintet, $J_{H-P_{cls}} = 6.6$ Hz; $J_{H-P_{trans}}$ was not observed). F.D.M.S.: Calcd. for $FeP_5O_{15}C_{16}H_{48}^+$: 691; obs: 692.

Reaction of Fe(P(OMe)₃)₅ with CF₃I

A solution of Fe(P(OMe)₃)₅ (2.03 g, 3.0 mmol) in ether was treated with CF₃I (70 ml 3.0 mmol) at

room temperature with stirring. A rapid reaction gave a greenish-yellow precipitate which was collected by vacuum filtration. ¹⁹F NMR of the crude product in methanol gave two weak signals assigned to *trans*-Fe(P(OMe)₃)₄(CF₃)(I) (quintet at -11.62 ppm, $J_{PF} = 52.5$ Hz) and [Fe(P(OMe)₃)₅CF₃]⁺ [I]⁻ doublet of quintets at -80.85 ppm, $J_{PF} = 79.5$ and 52.5 Hz). ³¹P NMR indicated that the major product was [Fe(P(OMe)₃)₅I]⁺ [I]⁻ and, after one recrystallization from CH₂Cl₂/MeOH, there were no fluorine-containing species left.

Reaction of Fe(P(OMe)₃)₅ with CFCl₃

A solution of Fe(P(OMe)₃)₅ (0.02 g, 0.03 mmol) in THF (0.5 ml) was mixed with CFCl₃ (1.5 ml vapor; 0.06 mmol) giving a rapid reaction. The vapor phase was sampled by GCMS giving the following peaks: CH₃Cl (6.58 min); FClC=CFCl (10.03 min); CFCl₃ (13.08 min); CH₃CFCl₂ (16.05 min); CHCFCl₂ (18.32 min); P(OMe)₂F (22.14 min); P(OMe)₃ (37.00 min).

Acknowledgments

We wish to acknowledge the fine technical assistance of Messrs. M. A. Cushing, Jr., G. Watunya, and F. Schock. We also wish to thank Drs. F. A. Van-Catledge, P. J. Domaille, and E. L. Muetterties for their helpful discussions.

References

- G. Booth in Adv. Inorg. Chem. Radiochem., 6, 1 (1964);
 K. K. Chow, W. Levason, and C. A. McAuliffe, in "Transition Metal Complexes of Phosphorus, Arsenic, and Antimony Ligands", C. A. McAuliffe, Ed., Wiley (1973).
 J. G. Verkade and K. J. Coskran, in "Organic Phosphorus
- 2 J. G. Verkade and K. J. Coskran, in "Organic Phosphorus Compounds, Vol. 2", G. M. Kosolapoff and L. Maier, Ed., Wiley (1972).
- 3 C. A. Tolman, Chem. Rev., 77, 313 (1977).
- 4 P. Meakin, A. D. English, S. D. Ittel, and J. P. Jesson, J. Am. Chem. Soc., 97, 1254 (1975).
- A. D. English, S. D. Ittel, C. A. Tolman, P. Meakin, and J. P. Jesson, J. Am. Chem. Soc., 99, 117 (1977).
- 6 J. P. Jesson and C. A. Tolman, Du Pont, U.S. 3,997,579.
- 7 S. Herzog, K. Gustav, E. Krueger, H. Oberender and R. Schuster, Z. Chem., 3, 428 (1963).
- M. Aresta, C. F. Nobile, and D. Petruzzelli, *Inorg. Chem.*, 16, 1817 (1977).
- 9 E. L. Muetterties and J. W. Rathke, Chem. Commun., 850 (1974).
- 10 J. P. Jesson, M. A. Cushing, and S. D. Ittel, *Inorg. Synth.*, 20, in press.
- 11 C. A. Tolman, J. Am. Chem. Soc., 92, 4217 (1970).
- 12 S. D. Ittel, Inorg. Chem., 16, 1245 (1977).
- 13 P. J. Krusic, Private communication.
- 14 S. D. Ittel, C. A. Tolman, P. J. Krusic, A. D. English, J. P. Jesson, *Inorg. Chem.*, 17, 3432 (1978).
- 15 C. N. McEwen and S. D. Ittel, Amer. Soc. Mass. Spec. Meeting, May 1977, Washington, D.C.; to be submitted to Organic Mass. Spec.