New Complexes of Palladium(II) with Dithiooxamide and N,N-Dimethyldithiooxamide

A. J. AARTS, H. O. DESSEYN and M. A. HERMAN

Laboratorium voor Anorganische Chemie, Rijksuniversitair Centrum, Groenenborgerlaan, 171, B-2020 Antwerpen, Belgium

Received April 15, 1978

During the course of our investigation on metal complexes of thioamides, we already studied compounds of primary [1] and tertiary thioamides [2, 3]. Extending this investigation, we report now on some complexes of dithiooxamide (H_2DH_2) and N,Ndimethyldithiooxamide (Me_2DH_2) . With these compounds it is possible to study coordination through the nitrogen atom, which is very rare for simple thioamides. Dithioamides, as dithiooxamide and dithiomalonamide, however, can coordinate through both the sulphur and the nitrogen atoms [4, 5].

As indicated by the metal analyses and the conductivity measurements (Table I) neither of the ligands lose a proton on coordination. In that case, planar dithiooxamides give S,N coordination [4],

while the non-planar N,N,N',N'-tetrasubstituted derivates are S,S coordinated [6]. The vibrational spectra (Table II) substantiate this for our compounds. In [Pd- $(H_2DH_2)_2$ Cl₂ most of the bands are split. The ν (CN) peaks are shifted to a higher and lower frequency, compared to the ligand, in agreement with a S,N coordination. Simultaneously the $\nu(CS)$ bands are also found at a higher and lower frequency. We must also take into account the symmetry lowering of the ligand on coordination $(C_{2h} \rightarrow C_s)$. However, as the I.R. and Raman active bands are very close to each other, in the case of the $\nu(CN)$ and $\nu(CS)$ vibrations [7], the symmetry change do not cause difficulties for the assignment. The $\nu(PdN)$ is assigned at 401 cm^{-1} and the $\nu(PdS)$ at 322 cm^{-1} . The $1\nu(MN)$ + 1v(MS) pattern indicates a trans configuration.

 Me_2DH_2 is a twisted molecule [8, 9] and at first sight, both S,N and S,S coordination are possible. However, from previous studies we know that in such case S coordination is preferred to N coordination [10]. This is made clear by the spectra of [Pd- $(Me_2DH_2)_2$]X (X = Cl or ClO₄), which show a frequency increase of the ν (CN) bands of both the primary and the tertiary thioamide. Bands with ν (CS) character show a frequency decrease consistent with

TABLE I. Analytical Data of the Pd(II) Complexes with HDH₂ and Me₂DH₂.

Compound	Colour	%M	(calc.)	%S	(calc.)	$\Lambda_{\mathbf{M}}/\Omega^{-1} \text{ mol}^{-1} \text{ cm}^2$
[Pd(H2DH2)2]Cl2	red	25.3	(25.47)	30.1	(30.73)	145 ^a
$[Pd(Me_2DH_2)_2]Cl_2$	orange	21.9	(22.45)	26.4	(27.08)	200 ^b
$[Pd(Me_2DH_2)_2](ClO_4)_2$	orange	17.5	(17.67)	21.3	(21.34)	260 ^b
$Pd(Me_2 DH_2)Cl_2$	brown	31.8	(32.67)	20.3	(19.72)	diss.

^a 10^{-3} *M* in MeOH. ^b 10^{-4} *M* in MeOH.

IABLE II. Important initiated Bands of the Pd(II) Complexes with H_2DH_2 and Me_2L
--

Compound			Vibratior	1			
_		δ(NH ₂)	v(CN)		ν(CS)	v(PdN)	v(PdS)
H ₂ DH ₂ [7]	I.R. R	1585 vs	1428 s (1440)		832 s 832(3)		
[PdL ₂ Cl ₂	I.R. R.	1693 m 1600 n	m 1485 vs 1491(10)	1315 sh 1321 (3)	1016 s 820 ms 1016(9) 815(2)	400 vw	325 w
		v(CN) (tert)	v(CN) (prim)	ν _s (RNR)) + ν (CS) (prim) + ν (CS) (te	rt) v(PdS)	
Me_2DH_2 [11] [PdL_2](ClO_4)2 ^a	I.R. I.R	1546 vs 1577 vs	1403 s 1480 m	929 m 920 w	851 m 667 sh 824 mw	331m	302 mw
[PdL ₂]Cl ₂ PdLCl ₂ ^b	I.R. I.R.	1595 s 1578 s 1539 vs	1490 m 1477 <i>m</i> s	915 m 917 w	817 m 663 w 812 ms 679 w	340m 34	315 mw 3 m

^av(ClO₄) at 1133 sh, 1110 vs, 1088 s, 936 vw, 635 m, 627 s, 460 vvw. ^bv(PdCl) at 312 s and 285 mw.

Compound			Other bands			
[Pd(H ₂ DH ₂) ₂]Cl ₂	17.7 sh	20.8	19.6	25.9 sh		
$[Pd(Me_2DH_2)_2]Cl_2$	19.2 sh	23.0 sh	25.1			
$[Pd(Me_2DH_2)_2](ClO_4)_2$	18.7 sh	22.2	26.0			
Pd(Me ₂ DH ₂)Cl ₂	19.8	21.7	23.9 sh	25.5	27.1	

TABLE III. Electronic Spectra^a of the Pd(II) Complexes.

 $a_{\overline{\nu}} \times 10^{-3}$ cm⁻¹; nujol mulls on filter paper.

S,S coordination. In Pd(Me₂DH₂)Cl₂ the ν (CN) of the tertiary function shows a small downward shift. However, such anomalous behaviour has already been observed in some tertiary thioamide complexes [2]. The ν (CS) vibrational frequencies, however, decrease, indicating S,S coordination. In the [Pd(Me₂DH₂)₂]-X₂ (X = Cl or ClO₄) compounds, two ν (PdS) vibrations are observed at 331–340 cm⁻¹ and at 302–315 cm⁻¹, respectively, as a moderately intense and a weak band. In Pd(Me₂DH₂)Cl₂ only one ν (PdS) band could be detected, the other probably being overlapped by the strong ν (PdCl) vibration at 312 cm⁻¹. A second ν (PdCl) band is found at 285 cm⁻¹. The observation of two ν (PdCl) bands is in agreement with the *cis*-structure.

The lower bands in the electronic spectra (Table III) can be assigned to d-d transitions. The frequencies of the bands are in good agreement with those of other S,N or S,S coordinated dithiooxamides [4, 6].

Experimental

 H_2DH_2 was purchased from Merck (*p.a.*); Me₂-DH₂ was prepared according to Persson and Sandström [9]. PdCl₂ was delivered by UCB.

$\left[Pd(H_2DH_2)_2\right]Cl_2$

50 ml of a 5×10^{-3} M solution of PdCl₂ in 2M HCl was added slowly to 200 ml of a 5×10^{-3} M solution of the ligand in a MeOH/HCl (37%) mixture. The concentration of HCl in the latter solution was also 2M. After one hour the complex was filtered off, washed with small quantities of MeOH and dried *in vacuo*.

$[Pd(MeDH_2)_2]Cl_2$

 $PdCl_2$ was dissolved in an ethanolic (96%) LiCl solution and added to an excess of ligand in EtOH.

After filtration, the complex was washed with EtOH and dried *in vacuo*.

Pd(MeDH₂)Cl₂

The same procedure as for $[Pd(Me_2DH_2)_2]Cl_2$, but the ligand solution was added to the metal solution in a 1:1 molar ratio.

$[Pd(Me_2DH_2)_2](ClO_4)_2$

 $Pd(OH)_2$, precipitated upon neutralization of a $PdCl_2$ solution in HCl with aqueous KOH, was dissolved in an $EtOH/HClO_4$ (70%) mixture (9:1 ratio). This solution was added to an excess of ligand in EtOH. The complex was filtered off, washed with EtOH and dried *in vacuo*. The analyses were performed by standard techniques. The physical methods [1, 2] have been reported earlier.

References

- 1 A. J. Aarts, H. O. Desseyn and M. A. Herman, *Transition* Met. Chem., in press.
- 2 A. J. Aarts, H. O. Desseyn and M. A. Herman, Bull. Soc. Chim. Belges, 85, 854 (1976).
- 3 A. J. Aarts, H. O. Desseyn and M. A. Herman, Bull. Soc. Chim. Belges, 86, 354 (1977).
- 4 G. Peyronel, A. C. Fabretti and G. C. Pellacani, J. Inorg. Nucl. Chem., 35, 973 (1973).
- 5 G. C. Pellacani and W. Malavasi, J. Inorg. Nucl. Chem., 37, 477 (1975).
- 6 A. C. Fabretti, G. C. Pellacani and G. Peyronel, J. Inorg. Nucl. Chem., 33, 4247 (1971).
- 7 H. O. Desseyn, B. J. Van der Veken and A. J. Aarts, Canad. J. Spectrosc., 22, 84 (1977).
- 8 A. Christensen, B. J. Van der Veken and H. J. Geise, Bull. Soc. Chim. Belges, 84, 1153 (1975).
- 9 B. Persson and J. Sandström, Acta Chem. Scand., 18, 1059 (1964).
- 10 A. J. Aarts, Diss., to be published.
- 11 H. O. Desseyn, A. J. Aarts and M. A. Herman, to be published.