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Whereas the acid-base reaction of [CO(CN),H]~- 
according to equation (1) has been described,’ - 3 
the corresponding reactions of [Rh(CN),H13- and 
[Ir(CN),H13- have not hitherto been identified. We 
have now found that [Rh(CN),H] 3- does react 
reversibly with OH- in aqueous solution to form 
tetracyanorhodate(I), [Rh(CN),13-, according to 
equation (2). We report here some measurements on 
the equilibrium and kinetics of reaction (2), as well 
as the preparation and characterization of [Rh(CN),13 
and the examination of some aspects of its chemistry. 

[CO(CN),H]~- + OH- C.--L [CO(CN),]~- + Hz0 (1) 

[Rh(CN),H13- + OH-# [Rh(CN),13- + CN- 

+ Hz0 (2) 

The equilibrium of reaction (2) was monitored 
spectrophotometrically by determining the equilibri- 
um concentrations of [Rh(CN)413- in aqueous 
solutions prepared either (a) by adding OH- to a 
solution initially containing [Rb(CN),H13- or (b) 
adding CN- to a preformed solution of [Rh(CN),13- 
(prepared as described below), equilibrium thus 
being approached from both directions. The range of 
concentrations encompassed by these measurements 
was 3.0 X 10m4 to 3.6 X 10e3 M CN- and 0.5 to 
3.0 M OH-. The total Rh concentration was typically 
cu. 5 X lO+ M. These measurements yielded a 
constant value of (3.5 f 0.5) X 10e5 at 25 “C and 
3.0 M ionic strength (maintained with NaCl) for the 
equilibrium quotient Kz defined by 

addition of an aqueous solution of [M(en)3]3’ 
(M = Cr or Co) yielded a yellow precipitate of the 
corresponding pure salt, [M(en),] [Rh(CN),] (yield 
75 - 85%), which was characterized analytically and 
spectrally: VCN, 2065 cm-’ (ir), 2086, 2108 cm-’ 
(raman), consistent with a square planar configuration. 

The solution spectrum of [Rh(CN),13- prepared 
by either of the above procedures (Amax 322 nm, 
E = 1.8 X lo4 M-’ cm-‘; X,, 365, E = 8.4 X 103; 
X,h 350, E = 5.8 X 103) is in qualitative agreement 
with that of the transient species previously observed 
by Jewsbury and Maher to form by the reaction of 
CN- with [Rh(CO),Cl] 2 and also identified by them 
as [Rh(CN),13- (reported4 h,, 320, E = 1.2 X 104; 
h max 366, E = 6.7 X 103). Formation of [Rh(CN),13- 
by the latter procedure requires addition of an excess 
of CN- (to displace CO). Under these conditions 
[Rh(CN),13- has only a transient existence such that, 
while detectable in stopped-flow experiments, it 
undergoes further reaction to form [Rh(CN),H] 3- 
[reverse of reaction (2)] . In contrast to this the two 
procedures described above yield stable aqueous 
solutions of [Rh(CN),13-. 

Measurements of the rate of approach to equilibri- 
um, in experiments similar to those described above, 
yielded determinations of the rate-laws of reaction 
(2) in both the forward and reverse directions. These 
rate-laws are as follows where kF = 8.4 X 10F4 M-’ 

see-’ and kR = 22 M-’ set-‘, both at 25 ‘C, 3M 
ionic strength: 

K = WWW43-l [CN-1 
- 

* [Rh(CN),H3-] [OH-] 
(3) 

[Rh(CN)43-] was also prepared by reduction of a 
suspension of RhC13 (2.5 mM) in 3M NaOH (15 ml) 
containing a stoichiometric amount of KCN (10 mM), 
by gentle refluxing with zinc powder. Dropwise 

RATE= d[Rh(CN)43-]/dt =kF[Rh(CN)5H3-]- 

[OH-I (4) 

kATE = -d [R~-I(CN),~-] /dt = kR [Rh(CN)43-] - 

W-l (5) 

It seems likely, both on a priori considerations and 
by analogy with the corresponding behavior of 
[CO(CN),H]~- I- * that reaction (2) proceeds through 
the following stepwise mechanism, 

[Rh(CN),H13- t OH- e [Rb(CN),14- t Hz0 
6 (6) 

[Rb(CN),14-5 [Rh(CN),13- + CN- (7) 
7 

Assuming the steady state approximation for 
[Rh(CN),14-, this yields kF = k6k7/(kke + k,) and 
kR = k_6k_7/(k--6 + k,). 
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These measurements do not permit the separate 
evaluation of the component rate-constants, kg, k7, 
k--6 and kkV. In the case of the corresponding re- 
actions of [Co(CN)sH] 3- it has been determined 
that kkh/k7 = 25.2 In accord with the usual vertical 
trend of relative stabilities of 4- and 5-coordinate 
d8 complexes it is likely that the tendency of 
[Rh(CN),14- to dissociate to form [Rh(CN),13- is 
considerably greater than the corresponding tendency 
for [CO(CN),]~-, i.e., k,(Rh) > k7(Co). Under the 
conditions of the limiting assumption that k-h/k7 
Q 1, the kinetic equations reduce to kF = k6 and 
kK = k_6k_7/k7. This yields k, = 8.5 X lo4 M-’ 

set-’ , compared with the previously determined 
value of I .O X 10-l M-’ set-’ for [CO(CN)~H]~-.~~~ 
This difference is in the anticipated direction, i.e., in 
accord with the expectation that [CO(CN),H]~- is a 
stronger acid than [Rh(CN),H13-. Experiments 
(similar to those which had accomplished the same 
objective in the case of [Co(CN)sH] 3-)1,2 are in 
progress to test the above assumption (i.e., that 
kke/k7 < 1, hence kF - ke) by trapping the inter- 
mediate [Rh(CN)s14- ion, for example with 
[Fe(CN)6]3- or CH31. 

It is noteworthy that, despite the expectation that 

[Co(CN), H13-, is a stronger acid than [Rh(CN)s H13- 
the equilibria corresponding to reactions (1) and (2) 
he far to the left for [COG H13- so that dissociation 
of the latter is negligible even in strongly basic solu- 
tions.lm3 The much higher degree of dissociation of 
[Rh(CN)sH13- according to reaction (2) apparently 
reflects the more favorable contribution of equilib- 
rium (7) i.e., the relatively greater tendency of 
[Rh(CN)s14- (as compared with [CO(CN),]~-) 
to dissociate to the four-coordinate complex 
[Rh(CN),13-. 

We have confirmed the earlier report4 of the 
oxidative addition of methyl iodide to [Rh(CN),13- 
according to equation (8). 

[Rh(CN),13- + CHaIL tram-[Rh(CN),- 

W3N3- (8) 

The stoichiometry of the above reaction was 
quantitatively established in aqueous solution, and 
the product ion characterized; h,, 308 nm (E = 
4.8 X IO2 M-l cm-‘), h,h 260 nm (E = 3.2 X 102); 
‘H nmr, 6CH, (d) -0.8, JRh_H 2.1 Hz. 

WWMCH,Nl 3- was also isolated by precipitation 
as the pure [Co(en),13+ salt: VCN, 2128, 2156 cm-’ 
(ir); 2153, 2136, 2128 cm-r (raman). Kinetic 
measurements on reaction (8) (followed spectro- 

photometrically) yielded the second order rate-law, 
-d [Rh(CN)43-] /dt = ks [Rh(CN)43-] [CH31] , where 
k, = 4.0 X lo2 M-’ set-’ at 25 “C, 1.5 M ionic 
strength, independent of [OH-] between 0.3 and 
1.5 M (compared with the value of 5.9 X lo2 M-’ 
set-’ reported by Jewsbury and Maher). 

In aqueous methanol (1: 1) solutions containing 
NaOH the reaction of CH31 with [Rh(CN)413- 
exhibited similar kinetics (ka = 4.4 X I O3 M-’ set-‘) 
but yielded different products in accord with the 
stoichiometry described by equation (9) (CH4 
determined mass-spectrometrically; [Rh(CN),(OH)I13- 
isolated and characterized as the [Co(en),13’ salt). 

[Rh(CN),13- + CH31 + Hz0 + [Rh(CN)4(OH)I]3- 
+ CH4 (9) 

It seems likely that under these conditions the 
primary reaction is still oxidative addition [i.e., eq. 
(S)] and that the observed products arise through a 
secondary reaction of [Rh(CN)4(CH3)I]3-. It was 
established that this secondary reaction is not a 
simple solvent-induced decomposition since the 
addition of methanol to an aqueous solution of 
preformed [Rh(CN)4(CH3)I]3- did not result in 
decomposition of the latter. A possible explanation 
of this behavior is a [Rh1(CN)4]3--induced decom- 
position of [Rh111(CN)4(CH3)I]3- through an 11 
bridged electron transfer reaction, i.e., 

[Rh1”(CN)4(CH3)I]3- f [Rh’(CN)413- + OH- 

+ [(OH)(CN)4Rhh11’(CN)4(CH3)] 7- 

2e- 

+ [Rh11’(CN)4(OH)I]3- + [Rh1(CN)4(CH3)]4- 

(10) 

[Rh@N)4(CH3)]4 - + Hz0 -+ 
[Rh1(CN),13- + CH,, + OH- (11) 

Whereas analogous examples of Rh’-catalyzed 
substitution reactions of Rh”‘complexes have indeed 
been identified,’ such a mechanism remains to be 
demonstrated in the present system. Experiments to 
test this suggestion are in progress. 

Similar kinetic and sroichiometric behavior [i.e., 

corresponding to eqn. (9)] were observed for several 
other organic halides whose reactions with [Rh(CN),13 
were examined in aqueous methanol. Thus, the reac- 
tion with C2H5 I yielded [Rh(CN),(OH)I] 3- and 
&He, etc. Only in one other instance, namely with 
C6HsCH2Cl, did the reaction follow the course of eq. 
(8) yielding the organorhodium product, [Rh(CN),- 
(CH&,H,)Cl] 3 -. 
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