The Synthesis, Characterization and Reactivity of Tetracyanorhodate(I)

J. HALPERN, R. COZENS and LAI-YOONG GOH Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, U.S.A. (Received January 21, 1975)

Whereas the acid-base reaction of $[Co(CN)_5H]^{3-}$ according to equation (1) has been described, $^{1-3}$ the corresponding reactions of $[Rh(CN)_5H]^{3-}$ and $[Ir(CN)_5H]^{3-}$ have not hitherto been identified. We have now found that $[Rh(CN)_5H]^{3-}$ does react reversibly with OH⁻ in aqueous solution to form tetracyanorhodate(I), $[Rh(CN)_4]^{3-}$, according to equation (2). We report here some measurements on the equilibrium and kinetics of reaction (2), as well as the preparation and characterization of $[Rh(CN)_4]^{3-}$ and the examination of some aspects of its chemistry.

 $[Co(CN)_{5}H]^{3-} + OH^{-} \rightleftharpoons [Co(CN)_{5}]^{4-} + H_{2}O (1)$ $[Rh(CN)_{5}H]^{3-} + OH^{-} \rightleftharpoons [Rh(CN)_{4}]^{3-} + CN^{-}$ $+ H_{2}O$ (2)

The equilibrium of reaction (2) was monitored spectrophotometrically by determining the equilibrium concentrations of $[Rh(CN)_4]^{3-}$ in aqueous solutions prepared either (a) by adding OH⁻ to a solution initially containing $[Rh(CN)_5H]^{3-}$ or (b) adding CN⁻ to a preformed solution of $[Rh(CN)_4]^{3-}$ (prepared as described below), equilibrium thus being approached from both directions. The range of concentrations encompassed by these measurements was 3.0×10^{-4} to $3.6 \times 10^{-3} M \text{ CN}^-$ and 0.5 to $3.0 M \text{ OH}^-$. The total Rh concentration was typically *ca.* $5 \times 10^{-4} M$. These measurements yielded a constant value of $(3.5 \pm 0.5) \times 10^{-5}$ at 25 °C and 3.0 M ionic strength (maintained with NaCl) for the equilibrium quotient K₂ defined by

$$K_{2} = \frac{[Rh(CN)_{4}^{3^{-}}][CN^{-}]}{[Rh(CN)_{5}H^{3^{-}}][OH^{-}]}$$
(3)

 $[Rh(CN)_4^{3-}]$ was also prepared by reduction of a suspension of $RhCl_3$ (2.5 mM) in 3M NaOH (15 ml) containing a stoichiometric amount of KCN (10 mM), by gentle refluxing with zinc powder. Dropwise

addition of an aqueous solution of $[M(en)_3]^{3+}$ (M = Cr or Co) yielded a yellow precipitate of the corresponding pure salt, $[M(en)_3]$ [Rh(CN)₄] (yield 75 - 85%), which was characterized analytically and spectrally: ν_{CN} , 2065 cm⁻¹ (ir), 2086, 2108 cm⁻¹ (raman), consistent with a square planar configuration.

The solution spectrum of $[Rh(CN)_4]^{3-}$ prepared by either of the above procedures (λ_{max} 322 nm, $\epsilon = 1.8 \times 10^4 M^{-1} \text{ cm}^{-1}; \lambda_{\text{max}} 365, \epsilon = 8.4 \times 10^3;$ λ_{\min} 350, $\epsilon = 5.8 \times 10^3$) is in *qualitative* agreement with that of the transient species previously observed by Jewsbury and Maher⁴ to form by the reaction of CN^{-} with $[Rh(CO)_2Cl]_2$ and also identified by them as $[Rh(CN)_4]^{3-}$ (reported⁴ λ_{max} 320, $\epsilon = 1.2 \times 10^4$; λ_{max} 366, $\epsilon = 6.7 \times 10^3$). Formation of [Rh(CN)₄]³⁻ by the latter procedure requires addition of an excess of CN⁻ (to displace CO). Under these conditions $[Rh(CN)_4]^{3-}$ has only a transient existence such that, while detectable in stopped-flow experiments, it undergoes further reaction to form [Rh(CN)₅H]³⁻ [reverse of reaction (2)]. In contrast to this the two procedures described above yield stable aqueous solutions of $[Rh(CN)_4]^{3-}$.

Measurements of the rate of approach to equilibrium, in experiments similar to those described above, yielded determinations of the rate-laws of reaction (2) in both the forward and reverse directions. These rate-laws are as follows where $k_F = 8.4 \times 10^{-4} M^{-1}$ sec⁻¹ and $k_R = 22 M^{-1} \text{ sec}^{-1}$, both at 25 °C, 3M ionic strength:

RATE =
$$d[Rh(CN)_4^{3-}]/dt = k_F[Rh(CN)_5H^{3-}]$$
.
[OH⁻] (4)
 $\overleftarrow{RATE} = -d[Rh(CN)_4^{3-}]/dt = k_R[Rh(CN)_4^{3-}]$.
[CN⁻] (5)

It seems likely, both on *a priori* considerations and by analogy with the corresponding behavior of $[Co(CN)_5H]^{3-1-2}$ that reaction (2) proceeds through the following stepwise mechanism,

$$[\operatorname{Rh}(\operatorname{CN})_{5}\operatorname{H}]^{3-} + \operatorname{OH}^{-} \underset{k_{-6}}{\overset{k_{5}}{\longleftrightarrow}} [\operatorname{Rh}(\operatorname{CN})_{5}]^{4-} + \operatorname{H}_{2}\operatorname{O}$$

$$(6)$$

$$[\operatorname{Rh}(\operatorname{CN})_5]^4 \xrightarrow[k_{-7}]{\operatorname{Kn}} [\operatorname{Rh}(\operatorname{CN})_4]^3 + \operatorname{CN}^-$$
(7)

Assuming the steady state approximation for $[Rh(CN)_5]^{4-}$, this yields $k_F = k_6 k_7/(k_{-6} + k_7)$ and $k_R = k_{-6}k_{-7}/(k_{-6} + k_7)$.

These measurements do not permit the separate evaluation of the component rate-constants, k_6 , k_7 , k_{-6} and k_{-7} . In the case of the corresponding reactions of [Co(CN)5H]³⁻ it has been determined that $k_{-6}/k_7 = 25.^2$ In accord with the usual vertical trend of relative stabilities of 4- and 5-coordinate d^8 complexes it is likely that the tendency of $[Rh(CN)_5]^{4-}$ to dissociate to form $[Rh(CN)_4]^{3-}$ is considerably greater than the corresponding tendency for $[Co(CN)_5]^{4-}$, *i.e.*, $k_7(Rh) \ge k_7(Co)$. Under the conditions of the limiting assumption that k_{-6}/k_7 $\ll 1$, the kinetic equations reduce to $k_F = k_6$ and $k_{\rm R} = k_{-6}k_{-7}/k_7$. This yields $k_6 = 8.5 \times 10^{-4} M^{-1}$ sec⁻¹, compared with the previously determined value of $1.0 \times 10^{-1} M^{-1} \text{ sec}^{-1}$ for $[Co(CN)_5 H]^{3-.1,2}$ This difference is in the anticipated direction, *i.e.*, in accord with the expectation that $[Co(CN)_5H]^{3-}$ is a stronger acid than [Rh(CN)₅H]³⁻. Experiments (similar to those which had accomplished the same objective in the case of $[Co(CN)_5H]^{3-}$ are in progress to test the above assumption (i.e., that $k_{-6}/k_7 \ll 1$, hence $k_F \sim k_6$) by trapping the intermediate $[Rh(CN)_5]^{4-1}$ ion, for example with $[Fe(CN)_6]^{3-}$ or CH_3I .

It is noteworthy that, despite the expectation that $[Co(CN)_5 H]^{3-}$, is a stronger acid than $[Rh(CN)_5 H]^{3-}$ the equilibria corresponding to reactions (1) and (2) lie far to the left for $[Co(CN)_5 H]^{3-}$ so that dissociation of the latter is negligible even in strongly basic solutions.¹⁻³ The much higher degree of dissociation of $[Rh(CN)_5 H]^{3-}$ according to reaction (2) apparently reflects the more favorable contribution of equilibrium (7), *i.e.*, the relatively greater tendency of $[Rh(CN)_5]^{4-}$ (as compared with $[Co(CN)_5]^{4-}$) to dissociate to the four-coordinate complex $[Rh(CN)_4]^{3-}$.

We have confirmed the earlier report⁴ of the oxidative addition of methyl iodide to $[Rh(CN)_4]^{3-}$ according to equation (8).

$$[Rh(CN)_{4}]^{3-} + CH_{3}I \xrightarrow{\kappa_{g}} trans - [Rh(CN)_{4} \cdot (CH_{3})I]^{3-}$$
(8)

The stoichiometry of the above reaction was quantitatively established in aqueous solution, and the product ion characterized; λ_{max} 308 nm ($\epsilon =$ $4.8 \times 10^2 M^{-1} \text{ cm}^{-1}$), λ_{min} 260 nm ($\epsilon = 3.2 \times 10^2$); ¹H nmr, δ_{CH_3} (d) -0.8, J_{Rh-H} 2.1 Hz. [Rh(CN)₄(CH₃)I]³⁻ was also isolated by precipitation as the pure [Co(en)₃]³⁺ salt: ν_{CN} , 2128, 2156 cm⁻¹ (ir); 2153, 2136, 2128 cm⁻¹ (raman). Kinetic measurements on reaction (8) (followed spectrophotometrically) yielded the second order rate-law, $-d[Rh(CN)_4^{3^-}]/dt = k_8[Rh(CN)_4^{3^-}][CH_3I]$, where $k_8 = 4.0 \times 10^2 M^{-1} \sec^{-1} at 25 \,^{\circ}C$, 1.5 *M* ionic strength, independent of [OH⁻] between 0.3 and 1.5 *M* (compared with the value of 5.9 $\times 10^2 M^{-1}$ sec⁻¹ reported by Jewsbury and Maher).⁴

In aqueous methanol (1:1) solutions containing NaOH the reaction of CH_3I with $[Rh(CN)_4]^{3-}$ exhibited similar kinetics ($k_8 = 4.4 \times 10^3 M^{-1} sec^{-1}$) but yielded different products in accord with the stoichiometry described by equation (9) (CH₄ determined mass-spectrometrically; $[Rh(CN)_4(OH)I]^{3-}$ isolated and characterized as the $[Co(en)_3]^{3+}$ salt).

$$[\operatorname{Rh}(\operatorname{CN})_4]^{3-} + \operatorname{CH}_3 I + \operatorname{H}_2 O \rightarrow [\operatorname{Rh}(\operatorname{CN})_4(\operatorname{OH})I]^{3-} + \operatorname{CH}_4 \qquad (9)$$

It seems likely that under these conditions the primary reaction is still oxidative addition [*i.e.*, eq. (8)] and that the observed products arise through a secondary reaction of $[Rh(CN)_4(CH_3)I]^{3-}$. It was established that this secondary reaction is not a simple solvent-induced decomposition since the addition of methanol to an aqueous solution of preformed $[Rh(CN)_4(CH_3)I]^{3-}$ did *not* result in decomposition of the latter. A possible explanation of this behavior is a $[Rh^{I}(CN)_4(CH_3)I]^{3-}$ through an I-bridged electron transfer reaction, *i.e.*,

ттт

$$[Rh^{III}(CN)_{4}(CH_{3})I]^{3^{-}} + [Rh^{I}(CN)_{4}]^{3^{-}} + OH^{-}$$

$$\rightarrow [(OH)(CN)_{4}Rh^{I}-I-Rh^{III}(CN)_{4}(CH_{3})]^{7^{-}}$$

$$\rightarrow [Rh^{III}(CN)_{4}(OH)I]^{3^{-}} + [Rh^{I}(CN)_{4}(CH_{3})]^{4^{-}}$$
(10)
$$[Rh^{I}(CN)_{4}(CH_{3})]^{4^{-}} + H_{2}O \rightarrow$$

$$[Rh^{I}(CN)_{4}]^{3^{-}} + CH_{4} + OH^{-} (11)$$

Whereas analogous examples of Rh^I-catalyzed substitution reactions of Rh^{III}-complexes have indeed been identified,⁵ such a mechanism remains to be demonstrated in the present system. Experiments to test this suggestion are in progress.

Similar kinetic and stoichiometric behavior [i.e., corresponding to eqn. (9)] were observed for several other organic halides whose reactions with $[Rh(CN)_4]^3$ were examined in aqueous methanol. Thus, the reaction with C_2H_5I yielded $[Rh(CN)_4(OH)I]^{3-}$ and C_2H_6 , etc. Only in one other instance, namely with $C_6H_5CH_2Cl$, did the reaction follow the course of eq. (8) yielding the organorhodium product, $[Rh(CN)_4 - (CH_2C_6H_5)CI]^{3-}$.

The reactivities of different organic halides toward $[Rh(CN)_4]^{3-}$ exhibited the following characteristic trends for oxidative addition reactions (values in parentheses are k_8, M^{-1} sec⁻¹, in 1:1 H₂O:CH₃OH containing 3M NaOH at 25 °C): CH₃I $(4.4 \times 10^3) \ge C_2 H_5 I(22) > n - C_3 H_7 I(7)$, reflecting the influence of increasing steric hindrance, and $C_6H_5CH_2I(1.7 \times 10^3) > C_6H_5CH_2Br(3.2 \times 10^2)$ $> C_6 H_5 C H_2 C l$ (6), reflecting the influence of decreasing carbon-halogen bond strength. It should be noted that the reactivity of $[Rh(CN)_4]^{3-}$ for oxidative addition is very high. Thus, the value of $k_8 = 4.4 \times 10^3 M^{-1} \text{ sec}^{-1}$ for the reaction of CH₃I with $[Rh(CN)_4]^{3-}$ is some 10⁶-fold higher than the rate constant (ca. $3.5 \times 10^{-3} M^{-1} \text{ sec}^{-1}$) for the corresponding oxidative addition of CH₃I to trans- $[Ir(PPh_3)_2(CO)Cl].^6$

References

- 1 J. Halpern and M. Pribanic, Inorg. Chem., 11, 658 (1972).
- 2 G. Guastalla, J. Halpern and M. Pribanic, J. Am. Chem. Soc., 94, 1575 (1972).
- 3 G. D. Venerable II and J. Halpern, J. Am. Chem. Soc., 93, 2176 (1971).
- 4 R. A. Jewsbury and J. P. Maher, J. Chem. Soc. Dalton, 2089 (1972).
- 5 J. V. Rund, F. Basolo and R. G. Pearson, *Inorg. Chem.*, *3*, 658 (1964).
- 6 P. B. Chock and J. Halpern, J. Am. Chem. Soc., 88, 3511 (1966).