The Synthesis, Characterization and Reactivity of Tetracyanorhodate(1)

J. HALPERN, R. COZENS and LAI-YOONG GOH *Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, U.S.A.* (Received January 21, 1975)

Whereas the acid-base reaction of $[Co(CN)_5H]^{3-}$ according to equation (1) has been described, $1 - 3$ the corresponding reactions of $[Rh(CN),H]^{3-}$ and $[Ir(CN),H]^{3-}$ have not hitherto been identified. We have now found that $[Rh(CN)_5H]^{3-}$ does react reversibly with OH⁻ in aqueous solution to form tetracyanorhodate(I), $[Rh(CN)_4]^{3}$, according to equation (2). We report here some measurements on the equilibrium and kinetics of reaction (2), as well as the preparation and characterization of $[Rh(CN)₄]$ ³⁻ and the examination of some aspects of its chemistry.

 $[Co(CN)_{5}H]^{3-} + OH^{-} \rightleftharpoons [Co(CN)_{5}]^{4-} + H_{2}O(1)$ $[Rh(CN),H]^{3-} + OH^- \rightleftharpoons [Rh(CN)_4]^{3-} + CN^ + H_2 O$ (2)

The equilibrium of reaction (2) was monitored spectrophotometrically by determining the equilibrium concentrations of $[Rh(CN)₄]$ ³⁻ in aqueous solutions prepared either (a) by adding OH^- to a solution initially containing $[Rh(CN)_5H]^3$ ⁻ or (b) adding CN^- to a preformed solution of $[Rh(CN)_4]^3$ -(prepared as described below), equilibrium thus being approached from both directions. The range of concentrations encompassed by these measurements was 3.0×10^{-4} to 3.6×10^{-3} M CN⁻ and 0.5 to $3.0 M O H^{-}$. The total Rh concentration was typically ca. 5×10^{-4} M. These measurements yielded a constant value of $(3.5 \pm 0.5) \times 10^{-5}$ at 25 °C and $3.0 M$ ionic strength (maintained with NaCl) for the equilibrium quotient K_2 defined by

$$
K_2 = \frac{\left[\text{Rh(CN)}_4{}^{3-}\right]\left[\text{CN}^- \right]}{\left[\text{Rh(CN)}_5\text{H}^{3-}\right]\left[\text{OH}^- \right]}
$$
(3)

 $[Rh(CN)₄³⁻]$ was also prepared by reduction of a suspension of RhCl₃ (2.5 mM) in $3M$ NaOH (15 ml) containing a stoichiometric amount of KCN (10 mM) , by gentle refluxing with zinc powder. Dropwise

addition of an aqueous solution of $[M(en)_3]^{3+}$ $(M = Cr)$ or Co) yielded a yellow precipitate of the corresponding pure salt, $[M(en)_3] [Rh(CN)_4]$ (yield 75 - 85%), which was characterized analytically and spectrally: v_{CN} , 2065 cm⁻¹ (ir), 2086, 2108 cm⁻¹ (raman), consistent with a square planar configuration.

The solution spectrum of $[Rh(CN)₄]$ ³⁻ prepared by either of the above procedures (λ_{max} 322 nm, $\epsilon = 1.8 \times 10^4 M^{-1}$ cm⁻¹; λ_{max} 365, $\epsilon = 8.4 \times 10^3$; λ_{min} 350, ϵ = 5.8 × 10³) is in *qualitative* agreement with that of the transient species previously observed by Jewsbury and Maher⁴ to form by the reaction of CN^- with $[Rh(CO)_2Cl]_2$ and also identified by them as $[Rh(CN)₄]^{3-}$ (reported⁴ λ_{max} 320, $\epsilon = 1.2 \times 10^{4}$; λ_{max} 366, ϵ = 6.7 × 10³). Formation of [Rh(CN)₄]³⁻ by the latter procedure requires addition of an excess of CN^- (to displace CO). Under these conditions $[Rh(CN)₄]$ ³⁻ has only a transient existence such that, while detectable in stopped-flow experiments, it undergoes further reaction to form $[Rh(CN)_5H]^{3-}$ [reverse of reaction (2)]. In contrast to this the two procedures described above yield stable aqueous solutions of $\left[\text{Rh(CN)}_{4}\right]^{3}$.

Measurements of the rate of approach to equilibrium, in experiments similar to those described above, yielded determinations of the rate-laws of reaction (2) in both the forward and reverse directions. These rate-laws are as follows where $k_F = 8.4 \times 10^{-4}$ M^{-1} sec^{-1} and $k_R = 22 M^{-1} sec^{-1}$, both at 25 °C, 3*M* ionic strength:

RATE= d[Rh(CN)43-]/dt =kF[Rh(CN)5H3-]- [OH-I (4) kATE = -d [R~-I(CN),~-] /dt = kR [Rh(CN)43-] - W-l (5)

It seems likely, both on a *priori* considerations and by analogy with the corresponding behavior of $[Co(CN), H]^{3-1-2}$ that reaction (2) proceeds through the following stepwise mechanism,

$$
[\text{Rh(CN)}_{5}H]^{3-} + OH^{-} \xleftarrow[k_{-6}]{k_{6}} [\text{Rh(CN)}_{5}]^{4-} + H_{2}O
$$
\n
$$
k_{-}
$$
\n(6)

$$
[Rh(CN)_5]^{4-\frac{K_7}{K_{-7}}} [Rh(CN)_4]^{3-} + CN^{-}
$$
 (7)

Assuming the steady state approximation for $[Rh(CN)_5]^{4-}$, this yields $k_F = k_6k_7/(k_{-6} + k_7)$ and $k_{\text{R}} = k_{-6}k_{-7}/(k_{-6} + k_{7}).$

These measurements do not permit the separate evaluation of the component rate-constants, k_6 , k_7 , k_{-6} and k_{-7} . In the case of the corresponding reactions of $[Co(CN)_5H]$ ³⁻ it has been determined that $k_{-6}/k_7 = 25.2$ In accord with the usual vertical trend of relative stabilities of 4- and 5-coordinate d^8 complexes it is likely that the tendency of $[Rh(CN)_5]^{4-}$ to dissociate to form $[Rh(CN)_4]^{3-}$ is considerably greater than the corresponding tendency for $[Co(CN)_5]^{4-}$, *i.e.*, $k_7(Rh) \ge k_7(Co)$. Under the conditions of the limiting assumption that k_{-6}/k_7 ≤ 1 , the kinetic equations reduce to $k_F = k_6$ and $k_{\rm R}$ = k₋₆k₋₇/k₇. This yields k₆ = 8.5 × 10⁻⁴ M^{-1} sec⁻¹, compared with the previously determined value of 1.0×10^{-1} M^{-1} sec⁻¹ for $[Co(CN)_5H]^{3-1,2}$ This difference is in the anticipated direction, *i.e.,* in accord with the expectation that $[Co(CN)_5H]^{3-}$ is a stronger acid than $[Rh(CN)_5H]^{3}$. Experiments (similar to those which had accomplished the same objective in the case of $[Co(CN), H]^{3-}$ ^{1,2} are in progress to test the above assumption *(i.e.,* that $k_{-6}/k_7 \ll 1$, hence $k_F \sim k_6$) by trapping the intermediate $[Rh(CN)_{5}]^{4-}$ ion, for example with $[Fe(CN)₆]$ ³⁻ or CH₃I.

It is noteworthy that, despite the expectation that $[Co(CN), H]^{3-}$, is a stronger acid than $[Rh(CN), H]^{3-}$ the equilibria corresponding to reactions (1) and (2) lie far to the left for $[Co(CN), H]^{3-}$ so that dissociation of the latter is negligible even in strongly basic solutions.¹⁻³ The much higher degree of dissociation of $[Rh(CN), H]^{3-}$ according to reaction (2) apparently reflects the more favorable contribution of equilibrium (7), *i.e.*, the relatively greater tendency of $[Rh(CN)_5]^4$ ⁻ (as compared with $[Co(CN)_5]^4$ ⁻) to dissociate to the four-coordinate complex $[Rh(CN)₄]$ ³⁻.

We have confirmed the earlier report⁴ of the oxidative addition of methyl iodide to $[Rh(CN)₄]$ ³⁻ according to equation (8).

$$
[Rh(CN)4]3- + CH3I K
$$
= \frac{[Rh(CN)4]}{(CH3)I]3-
$$
 (8)
$$

The stoichiometry of the above reaction was quantitatively established in aqueous solution, and the product ion characterized; λ_{max} 308 nm (ϵ = 4.8×10^2 *M*⁻¹ cm⁻¹), λ_{min} 260 nm (ϵ = 3.2 \times 10²); ¹H nmr, δ _{CH₃} (d) -0.8, J_{Rh-H} 2.1 Hz. $\left[\text{Rh(CN)}_{4}(\text{CH}_{3})\right]^{3}$ was also isolated by precipitation as the pure $[Co(en)_3]^{3+}$ salt: ν_{CN} , 2128, 2156 cm⁻¹ (ir); 2153, 2136, 2128 cm⁻¹ (raman). Kinetic measurements on reaction (8) (followed spectro-

photometrically) yielded the second order rate-law, $-d [Rh(CN)₄³⁻] /dt = k₈ [Rh(CN)₄³⁻] [CH₃I], where$ $k_8 = 4.0 \times 10^2 M^{-1} \text{ sec}^{-1}$ at 25 °C, 1.5 *M* ionic strength, independent of [OH-] between 0.3 and 1.5 *M* (compared with the value of 5.9 \times 10² M^{-1} sec⁻¹ reported by Jewsbury and Maher).⁴

In *aqueous methanol* (1: 1) solutions containing NaOH the reaction of CH₃I with $[Rh(CN)₄]$ ³⁻ exhibited similar kinetics ($k_B = 4.4 \times 10^3 M^{-1} \text{ sec}^{-1}$) but yielded different products in accord with the stoichiometry described by equation (9) (CH₄ determined mass-spectrometrically; $[Rh(CN)₄(OH)]³$ isolated and characterized as the $[Co(en)_3]^{3+}$ salt).

$$
[Rh(CN)4]3- + CH3I + H2O \rightarrow [Rh(CN)4(OH)I]3-+ CH4 (9)
$$

It seems likely that under these conditions the primary reaction is still oxidative addition *[i.e.,* eq. *(S)]* and that the observed products arise through a secondary reaction of $[Rh(CN)₄(CH₃)I]³⁻$. It was established that this secondary reaction is not a simple solvent-induced decomposition since the addition of methanol to an aqueous solution of preformed $[Rh(CN)₄(CH₃)I]³⁻$ did *not* result in decomposition of the latter. A possible explanation of this behavior is a $[Rh^I(CN)_4]^3$ -induced decomposition of $[Rh^{\text{III}}(CN)_4(CH_3)I]^3$ ⁻ through an I⁻ bridged electron transfer reaction, *i.e.,*

 $\overline{111}$

$$
[Rh^{III}(CN)_4(CH_3)]^{3-} + [Rh^{I}(CN)_4]^{3-} + OH^-
$$

\n
$$
\rightarrow [(OH)(CN)_4Rh^{I-I-Rh}^{III}(CN)_4(CH_3)]^{7-}
$$

\n
$$
\rightarrow [Rh^{III}(CN)_4(OH)]^{3-} + [Rh^{I}(CN)_4(CH_3)]^{4-}
$$

\n
$$
[Rh^{I}(CN)_4(CH_3)]^{4-} + H_2O \rightarrow [Rh^{I}(CN)_4]^{3-} + CH_4 + OH^-
$$
 (11)

Whereas analogous examples of Rh^I-catalyzed substitution reactions of Rh^{III} complexes have indeed been identified,⁵ such a mechanism remains to be demonstrated in the present system. Experiments to test this suggestion are in progress.

Similar kinetic and sroichiometric behavior *[i.e.,* corresponding to eqn. (9)] were observed for several other organic halides whose reactions with $[Rh(CN)₄]$ ³ were examined in aqueous methanol. Thus, the reaction with C_2H_5I yielded $[Rh(CN)₄(OH)]³⁻$ and C_2H_6 , *etc.* Only in one other instance, namely with $C_6H_5CH_2Cl$, did the reaction follow the course of eq. (8) yielding the organorhodium product, $[Rh(CN)_a$. $(CH_2C_6H_5)Cl]^{3-}$.

The reactivities of different organic halides toward $[Rh(CN)₄]$ ³⁻ exhibited the following characteristic trends for oxidative addition reactions (values in parentheses are k_8 , M^{-1} sec⁻¹, in 1:1 $H₂O:CH₃OH containing 3M NaOH at 25^oC): CH₃I$ $(4.4 \times 10^3) \ge C_2 H_5 I(22) > n - C_3 H_7 I(7)$, reflecting the influence of increasing steric hindrance, and $C_6H_5CH_2I (1.7 \times 10^3)$ $>C_6H_5CH_2Br (3.2 \times 10^2)$ $>C_6H_5CH_2Cl$ (6), reflecting the influence of decreasing carbon-halogen bond strength. It should be noted that the reactivity of $[Rh(CN)₄]$ ³⁻ for oxidative addition is very high. Thus, the value of $k_8 = 4.4 \times 10^3$ M^{-1} sec⁻¹ for the reaction of CH₃I with $[Rh(CN)₄]$ ³⁻ is some 10⁶-fold higher than the rate constant (ca. 3.5×10^{-3} M⁻¹ sec⁻¹) for the corresponding oxidative addition of CH₃I to *trans-* $[Ir(PPh_3)_2(CO)Cl]$.⁶

References

- 1 J. Halpern and M.Pribanic, Inorg. Chem., II, 658 (1972).
- 2 G. Guastalla, J. Halpern and M. Pribanic, J. *Am. Chem. Sot.,* 94, 1575 (1972).
- 3 G. D. Venerable II and J. Halpern, *J. Am. Chem. Soc.*, 93, 2176 (1971).
- R. A. Jewsbury and J. P. Maher, J. *Chem. Sot. Dalton, 2089 (1972).*
- 5 J. V. Rund, F. Basolo and R. G. Pearson, Inorg. *Chem., 3, 658 (1964).*
- P. B. Chock and J. Halpern, *J.* Am. *Chem. Sot.,* 88, 3511 (1966).