On the Thiourea Complexes of Mercury(II): HgTu₂A₂ and HgTu₂XA (X = Cl, Br, I; A = CIO₄, BF₄, CF₃COO)

G. O. MARCOTRIGIANO, G. PEYRONEL and R. BATTISTUZZI Istituto di Chimica Generale e Inorganica, University of Modena, 41100 Modena, Italy Received July 9, 1973

The thiourea complexes of mercury(II) HgTu₂XA $(X = Cl, Br, I; A = ClO_4, BF_4, CF_3COO)$ have been isolated. Their molar conductivities in MetOH (90-100 for $A = ClO_4$, BF_4 ; 70-80 for $A = CF_3COO$) characterize them as 1:1 electrolytes while the corresponding HgTu₂A₂ complexes behave as 2:1 electrolytes $(\Lambda_{\rm M} = \sim 190 \text{ for } A = ClO_4, BF_4; 125 \text{ for } A = CF_3$ COO). The lower conductivities of the trifluoroacetates seem to indicate an interaction of the trifluoroacetate ion with the complex in solution. The infrared spectra of the solid $HgTu_2A_2$ complexes show that at least one anion is coordinated to the metal. In all the $HgTu_2A_2$ and $HgTu_2XA$ complexes thiourea is Sbonded to the metal with the higher v(HgS) frequencies tentatively assigned to 300, 290, 280, 250 cm^{-1} for $[HgTu_2Y]A$ (Y = A, Cl, Br, I) complexes respectively. The v(HgX) (X = Cl, Br, I) frequencies may be tentatively assigned to 210-195, 146-142, 123-94 cm⁻¹ for the chlorides, bromides and iodides respectively.

Introduction

In a previous research¹ we prepared the solid mercuric complexes of thiourea (Tu), $HgTu_2A_2$ (A = ClO₄, BF₄, CF₃COO) and we studied by radiochromatographic method their exchange reaction with free ³⁵S-thiourea on paper chromatography elution. We have now prepared the new complexes $HgTu_2XA$ (X = Cl, Br, I) and studied both series of complexes by conductometric method and by infrared spectroscopy.

Experimental

The complexes $HgTu_2XA$ were prepared by dissolving 2.5 mM of the complexes $HgTu_2A_2$ in 5 ml H_2O and adding, very slowly and under energic agitation at room temperature, 2,5 mM of the corresponding sodium halide dissolved in 1 ml H_2O . The chloridederivatives precipitate during the addition of the sodium chloride solution. The bromide- and iodidederivatives crystallize after some hours, preferably on cooling at 5° C. After filtration the crystalline products were washed with water, ethanol and ethyl ether and dried under vacuum.

The complex HgTu₂IClO₄ was prepared by adding a solution of 2.5 mM KI in 5 ml CH₃OH to a solution of 2.5 mM HgTu₂(ClO₄)₂ in 5 ml C₂H₅OH and cooling the mixture overnight at 5° C in order to precipitate quantitatively KClO₄. After filtration 10 ml of benzene were added to the clear solution and after some hours the compound crystallized in colorless plates; it may be washed with ethanol and ethyl ether. The solubility of these complexes in CH₃OH increases from the chloride- to the iodide-derivatives.

These complexes react in water or methanol solution with thiourea in 1:1 molar ratio according to the scheme:

$$2HgTu_2XA + 2Tu \rightarrow HgTu_2X_2 + HgTu_4A_2$$

 $(A = ClO_4, BF_4, CF_3COO; X = Cl, Br)$. The complexes $HgTu_2X_2$ precipitate during the reaction; the complexes $HgTu_4A_2$ can be crystallized from the solution. The complex $HgTu_2I_2$ does not precipitate immediately but on concentration of the solution. These complexes were identified by chemical analysis.

The compounds were analysed by determining: mercury as HgS, sulphur as $BaSO_4$ and nitrogen with the Kjeldhal method (Table I). Conductometric measurements were performed with a WTW conductivity bridge in methanol solution. The infrared spectra were recorded on the solids in KBr pelletts (4000–250 cm⁻¹) or nujol mulls on polythene (500–250 cm⁻¹) with a Perkin–Elmer 521 spectrophotometer and in nujol mulls on polythene (400–60 cm⁻¹) with a Perkin– Elmer FIS3 spectrophotometer.

Results and Discussion

The molar conductivities (Table II) show that in methanolic solution the perchlorato- and fluoborato-complexes $HgTu_2A_2$ behave as 1:2 electrolytes and

	Hg	S	N	
HgTu₂ClClO₄	41.37(41.12)	13.07(13.15)	11.18(11.48)	
HgTu ₂ BrClO ₄	37.82(37.69)	11.96(12.04)	10.30(10.52)	
HgTu ₂ IClO ₄	34.32(34.63)	10.93(11.07)	10.01(9.67)	
HgTu ₂ ClBF ₄	42.15(42.21)	13.27(13.49)	11.79(11.78)	
HgTu ₂ BrBF ₄	38.64(38.60)	12.18(12.34)	10.78(10.77)	
HgTu ₂ ClCF ₃ COO	39.94(40.01)	12.56(12.79)	11.21(11.17)	
HgTu,BrCF,COO	36.61(36.75)	11.65(11.74)	10.25(10.26)	
HgTu,ICF,COO	33.90(33.84)	10.69(10.81)	9.27(9.44)	
HgTu ₂ Cl ₂	47.07(47.33)	14.91(15.10)	13.18(13.21)	
HgTu ₂ Br ₂	39.03(39.12)	12.55(12.50)	11.03(10.92)	
HgTu ₂ I ₂	32.95(33.06)	10.43(10.56)	9.13(9.23)	

HgTu₂XA as 1:1 electrolytes. The trifluoroacetatocomplexes have a lower conductivity which may be due to the lower mobility of the trifluoroacetato ion but also to a greater coordinating action of this ion,¹ in competition with the solvent.

Following on a sulphur-coordination of thiourea to the metal the infrared spectra of the complexes (Table II) show increased frequencies for the bands mainly due $\nu(NCN)$ asymmetric and $\nu(NCN)$ symmetric modes,² while the band mainly due to a ν (CS) mode² is shifted to lower energies. The splitting of these bands in the complexes may indicate that thiourea molecules do not have equivalent coordinations to the metal. The frequency lowering of one of the $\nu(NCN)$ symmetric frequencies to $\sim 1400 \text{ cm}^{-1}$ may be due to the $\nu(CS)$ component of this band.

The complexes $HgTu_2A_2$ (A = ClO₄, BF₄) have very similar far infrared spectra (Table II) and therefore similar structures. The very strong band at 299 cm⁻¹ may be assigned to ν (HgS) frequency.³ The very strong and broad band at 182-184 cm⁻¹, containing also the ligand band at 174 cm⁻¹, the very strong bands at 133 and 95 cm⁻¹ could be related to some δ (HgSC), π (HgSC), δ (SHgS), π (SHgS) modes, even if an assignment cannot be made without further evidence.3

Two infrared bands indicate that in the perchloratocomplex one ClO_4^- ion has changed its T_d into C_{3v} symmetry:⁴⁻⁷ its band at ~ 1100 cm⁻¹ is split giving a very strong band at 1026 cm⁻¹ which is absent in the other perchlorato-complexes (Table II) and the band at 923 cm⁻¹ is much more intense than in the other complexes. A similar lowering of symmetry $(T_d \rightarrow C_{3v})$ is indicated for the BF_4^- ion⁶ by the strong band at 977 cm⁻¹ which is not present in the other fluoboratocomplexes and by the medium band at 768 cm⁻¹ which is stronger than in the other fluoborato complexes.

These complexes may therefore be represented by the structural formulas [HgTu₂OClO₃]ClO₄ and [HgTu₂FBF₃]BF₄, presumably with a highly deformed trigonal symmetry. The high frequency of the $\nu(HgS)$

band may be due to a low energy of the third coordination bond with the anion.

Similarly one trifluoroacetato ion may be considered as coordinated to the metal in the HgTu₂(CF_3COO)₂ complex since: (a) this seems to occur even in methanol solution, (b) a strong band appearing at 282 cm⁻¹ in the far infrared spectra of the complex [HgTu₂CF₃ $COO]CF_3COO$ and of the salt $Hg(CF_3COO)_2$ in which both trifluoroacetato ions are coordinated to the metal, but not in the complexes [HgTu₂X](CF₃COO). The complex [HgTu₂CF₃COO]CF₃COO shows a second very strong band at 270 cm⁻¹ which corresponds to the uncoordinated anion and appears also in the spectra of [HgTu₂X]A complexes and in the salt CF₃COOK.

The $\nu(HgS)$ frequency may be assigned, in the [HgTu₂CF₃COO]CF₃COO complex, to the band at 307(s) cm⁻¹, which is very close to the bands at 299(vs) cm⁻¹ in the other HgTu₂A₂ complexes.

The complexes $HgTu_2XA$ (X = Cl, Br, I; A = ClO₄, BF_4 , CF_3COO) may be compared with the known complexes $HgTu_2X_2$ (X = Cl, Br, I) which have been studied by diffractometric X-ray analysis. The complex HgTu₂Cl₂ has the structure [HgTu₂Cl]Cl with two sulphur atoms and one chlorine atom bonded to mercury in a distorted trigonal plane and the second chloride ion located perpendicular to this plane at 3.22 Å from mercury.⁸ HgTu₂Br₂⁹ has a polymeric pseudooctahedral structure with four bromine bridging atoms in the plane and two sulphur atoms in a pseudo-transoctahedral deformed position (145°). HgTu₂I₂¹⁰ has a deformed tetrahedral structure, the mercury atom being coordinated to both sulphur atoms of the thiourea molecules and to both iodine atoms.

The far infrared spectra of the $HgTu_2X_2$ (X = Cl, Br) complexes³ show two bands at 251(m), 236(m) and 252(s), 228(m) cm⁻¹, respectively, which were assigned to $\nu(HgS)$ frequencies. They are quite independent from the different structures of the two complexes. The higher $\nu(HgS)$ bands in the HgTu₂XA complexes can be located only at higher frequencies

TABLE Molar Co	II. More C onductivitie	haracteristi s ${\cal A}_{\sf M}(\Omega^{-1}{ m m})$	c Infrared] iol ⁻¹ cm ²) ir	Bands (cm' 1 MetOH (⁻¹) of the C 10 ⁻³ <i>M</i>) S ₆	Complexes l olution.	HgTu ₂ A ₂ , F	HgTu ₂ XA (X	(= Cl, Br,	I; A = ClO	4, BF4, CF	F ₃ COO (AF	² 3)) and Re	lated Compounds.
Tu	HgTu ₂ (ClO ₄) ₂	HgTu ₂ CI·CIO4	HgTu₂ Br∙ClO₄	HgTu₂ I · ClO₄	HgTu ₂ (BF ₄) ₂	HgTu ₂ Cl·BF ₄	HgTu ₂ Br·BF₄	${ m Hg(AF_3)_2} \cdot { m 2H_2O}$	HgTu ₂ (AF ₃) ₂	HgTu ₂ Cl·AF ₃	HgTu₂ Br∙AF₃	HgTu₂ I∙AF₃	KAF ₃	
1612vs	1630vs 1620eh	1628vs 1620sh	1631vs 1618vs	1627vs 1618ve	1629vs 1618ve	1628vs 1620vs	1629vs 1618vs	1655vsb	1660vs 1628vs 1618eb	1658vs 1628vs 1616vs	1658vs 1628vs 1615vs	1665vs 1612vs	1660vsb	ν (CO) asym δ (NH ₂) + ν (NCN) asym
1410vs	1435s 1399s	1423s 1400s	1438s 1398s	1425s 1390s	1438s 1399s	1430s 1402s	1437s 1398vs	1435s	1436s 1398s	1437vs 1399vs	1435vs 1395vs	1423vs 1393vs	1442ms	v(CO) sym v(NCN) sym + $v(CS) + o(NH_2)$
								1220vs 1176sh 1152vsb	1192vs 1175sh 1145vs	1211vs 1175sh 1135vs	1209vs 1180sh 1135vs	1210vs 1182vs 1130vs	1222vs 1180w 1150vs	ν(CF ₃) asym
1080s	1086vs	1084vsb	1090vsb	1084vs	1085vs	1087sh	1083sh		1080sh	1115sh	1105sh		~	$\int_{\rho(NH_{2})}^{\nu(NCN)} asym +$
	1026vs 923s	930vw	942vw	942vw	1055vs 1032vs 977s 768m	1060vs 1032vs 774v w	1055vs 1032vs 772vw							ClO4 BF4
								836s 804s	838s 805ms	840s 808s	838s 808s	840s 808s	840s 808s	ν(C-C) ν(CF ₃) sym
								722s	798ms 723s	725s	723s	723s	726s	CO ₂ def
728vs	714sh 702s	710sh 698s	713s 698s	708ms 695s	713sh 702ms	714ms 702s	712s 699ms		711s	712s	712s	709s	~	ν(CS)
460s	477s	469s	2	455sh	477vs	480s	478vs		478s	480vs	478vs	472vs	•	$v(CS) + \delta(NCN)$
					352sh	346m	347m	458sb 281vc	282s				440w	BF_4
	299vs	287s 259m	277s 250ms	247s 228s	299vs	287ms 252m	278s 251s	(309w)	270vs 307s	265s 288m 250sh	262s 284ms 244m	271vs 286s 246sh	270s }	CF ₃ COO v(HgS)
174s	182vsb	210sh 177vs	142s 176s	123vsb 173s	184vs	210s 178vs	144vs 176vs	180vs	180 vsb (195vsb (195vsb)	146sh 180vs	236vs 94ms 178s	227m ¹ 203w	ν(HgX) Other bands
	143sh 1233-och	166sh	(142s)		1/3sh 143sh 124	150sh	(144vs)	150w	148b	145vsb	146sh	142vs	150w	
114ms	96vs 96vs 80vs 65s	103vs 88sh	120m 78s	(123vsb) 77s	95vs 95vs 84vs 62sh	103s	119ш 88vs	100vsb	104s 57ms	106sh 82w	126vsb 66ш	(94ms) 67w		
	192	104	66	96	189	66	90		125	79	74	72		Am

Thiourea complexes of Hg(II)

7

as it is indicated in Table II. They show, at least for the perchlorato- and fluoborato-complexes, a decrease in the ν (HgS) frequency going from the chloride to the iodide, perhaps due to a different influence of the coordinated halogen atom(s) on the metal-sulphur bond energy.

In the far infrared spectra of the HgTu₂X₂ (X = Cl, Br) complexes other bands were observed at 215(vs), 193(vs) cm⁻¹ for the chloride and at 158(s), 129(msb) cm⁻¹ for the bromide³ but no assignment was made for the ν (HgX) bands. A higher ν (HgCl) frequency should correspond to the terminal Hg–Cl bond ascertained by the X-ray structure determination of the chloride complex.⁸

In the HgSu₂X₂ (X = Cl, Br, I)¹¹ complexes of selenourea (Su) the bands at 204(s), 200(sh) cm⁻¹ for the chloride were assigned to ν (HgX) frequencies [ν (HgSe) = 176(s) cm⁻¹] considering that metal– chlorine bond lengths in HgCl₂ complexes tend to vary considerably according to the nature of the other ligands in the mercury co-ordination sphere. The 3(ν MSe + ν MX) bands of the other two complexes: 189m, 172s, 148s cm⁻¹ for the bromide and 155s, 126m,sh, 112m? cm⁻¹ for the iodide were not distinctly assigned.

For the HgTu₂XA complexes the mostly strong bands at 210–195 cm⁻¹ for the chlorides, 146–142 cm⁻¹ for the bromides, 123–94(?) cm⁻¹ for the iodides may be assigned to ν (HgX) frequencies (Table II). These frequency values are in agreement with the literature values for halide-bridged complexes of mercury(II). This assignment could therefore suggest for this class of complexes a tetrahedral structure in the solid state like

$$\begin{bmatrix} T_{u} & X & T_{u} \\ T_{u} & Y & T_{u} \end{bmatrix} A_{2}$$

Another interpretation could be that in the case of a trigonal structure like

strong Hg–S bonds, as indicated by their ν (HgS) frequencies, could weaken the Hg–X bonds in such a way as to reduce their stretching frequencies to values very close to those of the halide-bridging bonds.

Owing to the great variety of coordination geometries shown by the mercury(II) ion and considering the above mentioned uncertainties in interpreting the I.R. spectra of simple complexes like $HgTu_2X_2$ and $HgSu_2X_2$, a choice between these two hypotheses or others appears rather difficult.

Acknowledgement

This work has been supported by a financial aid of the Consiglio Nazionale delle Ricerche of Italy.

References

- 1 G. Peyronel, G. Marcotrigiano and R. Battistuzzi, J. Inorg. Nucl. Chem., 35, 1117 (1973).
- 2 G.B. Aitken, J.L. Duncan and G.P. McQuillan, J. Chem. Soc. (A), 2695 (1971).
- 3 D.M. Adams and J.B. Cornell, J. Chem. Soc. (A), 884 (1967).
- 4 B.J. Hathaway and A.E. Underhill, J. Chem. Soc., 3091 (1961).
- 5 A.E. Winckenden and R.A. Krause, *Inorg. Chem.*, 4, 404 (1965).
- 6 I.M. Procter, B.J. Hathaway and P. Nicholls, J. Chem. Soc. (A), 1678 (1968).
- 7 N. M. Karayannis, C. M. Mikulski, M. J. Strocko, L. L. Pytlewski and M. M. Labes, J. Inorg. Nucl. Chem., 33, 3185 (1971).
- 8 P.D. Brotherton, P. C. Healy, C. L. Raston and A. H. White, J. Chem. Soc., Dalton, 1973, 334.
- 9 A. Korczynski, Zeszyty Naukowe Politechniki Lodzkiej, Chemia, 19, 85 (1969).
- 10 A. Korczynski, Rozniki Chemii, Ann. Soc. Chim. Polon., 42, 393 (1968).
- 11 G.B. Aitken, J.L. Duncan and G.P. McQuillan, J. Chem. Soc., Dalton Trans., 1972, 2103.