Chromium(III) and Iron(III) Perchlorate Chelates with the Mono-N-Oxides of 2,2'-Bipyridine and 1,10-Phenanthroline

A.N. SPECA, N.M. KARAYANNIS*, and L.L. PYTLEWSKI Department of Chemistry, Drexel University, Philadelphia, Pa. 19104, U.S.A. Received January 3, 1974

2,2'-bipyridine- and 1,10-phenanthroline-mono-Noxide (bipyNO and phenNO, respectively) chelates with Cr(III) and Fe(III) perchlorates were synthesized and characterized by means of spectral, magnetic and conductance studies. The new complexes are of the types $[M(bipyNO)_3](ClO_4)_3 \cdot 2H_2O$ and $[M(phenNO)_3]$ $(ClO_4)_3$ (M = Cr, Fe). The mono-N-oxides act as bidentate O,N-chelating agents. The bipyNO complexes contain lattice water. The UV bands of bipyNO exhibit larger shifts and splittings than those of phenNO, upon metal complex formation. BipyNO exists in the trans-form in the crystal and assumes a configuration close to the cis-form in its metal chelates, whereas free phenNO is rigidly held in the cis-form in the crystal, and has the same conformation in its chelates. The electronic spectra of the complexes are characterized by strong metal-to-ligand charge-transfer bands. Approximate Dq parameter calculations for the Cr(III) complexes indicate that bipyNO and phenNO are weaker ligands than the parent bases and stronger ligands than the corresponding N,N-dioxides. The Cr(III) complexes are magnetically normal, but the Fe(III) compounds exhibit temperature-dependent magnetic moments (3.02–3.67 BM for the bipyNO acid, 1.98–2.52 BM for the phenNO complex, over the temperature range $80-313^{\circ}$ K), which were attributed to the existence of spin-free-spin-paired equilibria.

Introduction

Recent work at this laboratory dealt with the synthesis and characterization of divalent 3d metal perchlorate chelates with the mono-N-oxides of 2,2'-bipyridine (bipyNO)¹ and 1,10-phenanthroline (phenNO).² These studies have now been extended to include the corresponding Cr(III) and Fe(III) complexes of the above ligands, reported in the present paper. Aside from this laboratory's work,^{1,2} the only complexes of the above ligands reported in the literature are Co(II), Ni(II) and Cu(II) chloride-phenNO chelates³ and salts of both bipyNO⁴ and phenNO⁵ with mineral acids. In addition, complex formation between Fe^{3+} and bipyNO has been detected in solution.⁶

Experimental

Chemicals

BipyNO and phenNO were prepared by the methods of Murase⁶ and Corey *et al.*,³ respectively, and their authenticity checked by means of elemental analyses and examination of their melting points (bipyNO $57-58^{\circ} C$,^{6,7} phenNO $180-181^{\circ} C^{3,8}$) and ir spectra.^{4,5}. Reagent grade Cr(III) and Fe(III) perchlorates (hydrated), triethyl orthoformate and organic solvents were utilized.

Syntheses

3.2 mmoles of ligand and 1 mmole of metal salt were treated separately in ca. 10 ml of a 3/2 (V/V) ethanol-triethyl orthoformate mixture at 50-60°C for 15-20 min under stirring. The ligand and salt solutions were subsequently combined. In the case of phenNO, precipitates formed immediately. The bipyNO complexes precipitated in the form of viscous oils, which were hardened to solids upon anhydrous diethyl ether addition. These solids were ground into fine powders in a mortar under ether. The new complexes were filtered, thoroughly washed with ether and dried in an evacuated desiccator over phosphorus pentoxide. Analytical data (Schwarzkopf Microanalytical Laboratory, Woodside, N.Y.), given in Table I, suggest that they are of the types M(bipyNO)₃(ClO₄)₃·2H₂O and $M(phenNO)_3(ClO_4)_3$ (M = Cr, Fe). These complexes are very sparingly soluble or insoluble in water, ethanol or chloroform, and soluble in nitromethane and dimethylsulfoxide.

Spectral, Magnetic, Conductance and X-ray Powder Diffraction Measurements

Infrared (Table II), and electronic (Table III) spectra, magnetic susceptibility (Table III), conductance mea-

^{*} Present address: Amoco Chemicals Corporation, Naperville, Illinois.

Complex	Color	Analysis							
		C% Calc.	Found	H% Calc.	Found	N % Calc.	Found	Metal Calc.	% Found
$Cr(binyNO)_{1}(ClO_{4})_{2} \cdot 2H_{2}O$	Lilac	39.90	40.59	3 13	3.42	9.31	9.33	5.76	5.75
$Fe(bipyNO)_3(ClO_4)_2 \cdot 2H_2O$	Red-brown	39.73	40.86	3.12	3.48	9.27	9.62	6.16	6.17
$Cr(phenNO)_3(ClO_4)_3$	Light green	46.04	46.66	2.58	3.07	8.95	8.74	5.54	5.07
Fe(phenNO) ₃ (ClO ₄) ₃	Olive green	45.86	47.12	2.57	3.10	8.91	9.33	5.92	5.71

TABLE I. Analytical Data for bipyNO and phenNO-Metal Perchlorate Complexes.

TABLE II. Pertinent Infrared Data for bipyNO, phenNO and their Cr(III) and Fe(III) Perchlorate Complexes (cm⁻¹).^a A. BipyNO Complexes

Compound	ν _{N-0}	δ _{N-0}	(ν_{3}, ν_{4})	ν _{8a} , ν _{19a} ν _{10b} ^b and γcμ ^c	ν _{M-O}	ν _{M-N}	$^{\nu_{\rm Ligand}}$ (450–200 cm ⁻¹)
bipyNO	1250 s 1232 s	855 vs	_	1575 m 1457 m 765 vs 770 vs	-	-	443 w 401 m-s 340 m 310 w 291 w 279 w 251 w 242 w 221 sh 200 m, b
Cr(bipyNO)₃(ClO₄)₃ · 2H₂O	1241 m 1200 s	844 s	1075 vs, vb 620 vs	1593 s 1472 vs 769 vs 789 m, sh	412 s	376 m	430 s, sh 391 m-s 349 m 340 m 331 m 320 w, sh 300 w, b 290 m 278 m 266 m 244 m 200 m-w < 200 vs
Fe(bipyNO)₃(ClO₄)₃ · 2H₂O	1236 m 1201 s	850 s 839 s	1070 vs, vb 620 vs	1594 s 1470 s 767 vs 791 m-s	390 vs	359 m, sh	420 m 395 m-s, sh 340 w, sh 319 m-w 305 w 295 w 289 m-s 279 vs 266 m 243 m 220 m-w < 200 vs

Chromium(III) and Iron(III) chelate complexes

TABLE II. (Cont.)

B. PhenNO Complexes

Compound	ν _{N-0}	δ _{N-0}	(ν_{c10_4})	1650– 1540 cm ⁻¹ region	γсн modes	ν _{M-0}	ν _{M-N}	$v_{\text{Ligand}} (450-200 \text{ cm}^{-1})$
phenNO	1269 s 1249 s	811 sh 808 s	-	1612 w 1590 m 1588 sh 1550 m 1546 sh	854 s 835 vs 722 s 710 vs	-	-	445 w, b 407 sh 397 m 361 m 320 vw 289 m 278 m–s 265 w 241 m 220 m–s 208 m–s
Cr(phenNO)₃(ClO₄)₃	1235 m 1205 m	802 sh 798 m	1081 vs 623 vs	1630 w 1603 w 1577 m 1569 m, sh 1556 w, sh	849 vs 719 m 703 s	450 w-m, b	390 m	435 w 420 w-m 408 w 388 m, sh 375 w 366 w 338 w 320 w, b 300 w 280 m 268 w 242 m 222 m-w 208 m-s
Fe(phenNO)₃(ClO₄)₃	1258 m 1233 m 1207 m	816 m 796 m	1088 vs 621 s	1630 w 1602 w 1586 w, sh 1576 m 1565 m, sh 1560 m, sh	848 s-vs 723 m 708 s	439 m	386 m	420 m 377 w, sh 345 m 337 w, sh 320 w, sh 290 w, sh 279 m-s 267 m 246 m 221 m-w 208 s

Abbreviations: s, strong; m, medium; w, weak; b, broad; v, very; sh, shoulder. ^a Hexachlorobutadiene ($4000-1300 \text{ cm}^{-1}$) and Nujol ($1350-200 \text{ cm}^{-1}$) mull spectra. ^b Bands attributed to the pyridine fragment of bipyNO. ^c Bands attributed to the pyridine N-oxide fragment of bipyNO.

surements, and X-ray powder diffraction patterns were obtained by methods described elsewhere.^{2,9} Temperature-dependence measurements (Table IV) of the magnetic susceptibility of the ferric complexes were performed by Professor A.B.P. Lever's laboratory, York University, Toronto, Ont., Canada. The molar conductivities of $10^{-3} M$ nitromethane solutions of the complexes at 25° C are as follows (Λ_{M} in Ω^{-1} cm² mole⁻¹): Cr(bipyNO)₃(ClO₄)₃·2H₂O, 263; Fe(bipy NO)₃(ClO₄)₃.2H₂O, 266; Cr(phenNO)₃(ClO₄)₃, 280; Fe(phenNO)₃(ClO₄)₃, 245. The X-ray powder patterns of the bipyNO complexes show that these compounds are amorphous. The phenNO analogs are crystalline, but not isomorphous, and exhibit the following patterns (d spacings in Å; relative intensities in parentheses): $Cr(phenNO)_3(ClO_4)_3$: 10.04(12), 9.93(8), 8.11(11), 5.90(22), 5.79(15), 5.37(26), 4.90(22), 4.09(100), 3.55(89), 3.42(78), 3.39(60), 3.24(45), 2.93(66), 2.44(18). Fe(phenNO)_3(ClO_4)_3: 6.23(34), 5.50(28), 4.55(34), 4.41(34), 4.21(68), 4.17(68), 3.98(72), 3.93(66), 3.81(81), 3.62(100), 3.52(68), 3.48(68), 3.40(50), 3.21(44), 3.01(25).

Compound	Electronic Spectra	1	Magnetic Properties			
	Medium	λ_{\max} nm(ϵ max)	Хм ^{сог} cgsu	μ _{eff} BM		
bipyNO	Nujol	239 vs	-	_		
		281 vs				
		293 sh				
		344 s, sh				
$Cr(bipyNO)_3(ClO_4)_3 \cdot 2H_2O$	Nujol	204 vs	5806	3.73		
		220 vs, sh				
		224 vs, sh				
		234 vs, sh				
		245 s-vs				
		259 s-vs				
		282 s-vs				
		317 vs, vb				
		340 s-vs, sh				
		378 s, sh				
		456 m, sh				
		512 m, sh				
		551 m				
	$76 \times 10^{-3} M$ in CH ₃ NO ₂	<400(>600)				
		459 sh(128)				
		500(79)				
		543 sh(50)				
	X 7 · · ·	604 sh(10)	5565	2.66		
$Fe(bipyNO)_3(ClO_4)_3 \cdot 2H_2O$	Nujol	205 vs	2202	3.00		
		222 s, sh				
		203 Vs, sn				
		274 VS, D				
		320 VS, VD				
		333 VS, VD				
	25 × 10-5 M = CU NO	403 s, vD, sn				
	$25 \times 10^{-1} M \ln CH_3 NO_2$	<400(22700)				
		400(2090) 512(2070)				
	Nutat	216 vs				
phenNO	Nujoi	210 VS				
		243 VS				
		325 s h sh				
		$380 \text{ m}_{-s} \text{ sh}$				
		434 m sh				
$C_{r}(nhen NO)_{r}(C O_{r})_{r}$	Nuiol	207 vs	5982	3.79		
C1(pheni(0)3(CiO4)3	Nujoi	222 vs				
		222 vs				
		288 vs. b				
		336 s. sh				
		371 s				
		398 s. sh				
		527 m, b				
	$66 \times 10^{-5} M$ in DMSO	<400(>700)				
		505 sh(47)				
Fe(phenNO) ₃ (ClO ₄) ₃	Nujol	218 s, sh	2565	2.51		
	-	248 vs				
		284 vs, b				
		312 s, sh				
		378 s, b, sh				
	$35 \times 10^{-5} M$ in DMSO	377(2330)				
		610 sh(330)				

TABLE III. Electronic Spectra and Magnetic Properties (300° K) of Cr(III) and Fe(III) Perchlorate Complexes with bipyNO and phenNO.

Abbreviations: s, strong; m, medium; w, weak; b, broad; v, very; sh, shoulder.

TABLE IV. Magnetic Susceptibility Variation with Temperature for the Ferric Perchlorate Complexes with bipyNO and phenNO.

Complex	Temp. °K	10 ⁶ χ _g cgsu	10 ⁶ χ _m sgsu	μ_{eff} BM
Fe(bipyNO) ₃ (ClO ₄) ₃ · 2H ₂ O	80.2	15.16	14198	3.02
	85.0	14.69	13771	3.06
	101.2	12.68	11944	3.10
	118.5	11.12	10533	3.16
	135.4	10.02	9537	3.21
	152.4	9.18	8774	3.27
	170.1	8.47	8126	3.33
	187.7	7.90	7612	3.38
	205.8	7.41	7164	3.44
	224.0	6.97	6765	3.48
	242.5	6.60	6433	3.53
	260.4	6.27	6133	3.57
	278.8	5.96	5850	3.61
	297.2	5.70	5617	3.66
	312.6	5.44	5384	3.67
Fe(phenNO) ₃ (ClO ₄) ₃	81.4	5.92	6025	1.98
	98.3	5.16	5304	2.04
	111.2	4.67	4846	2.08
	127.6	4.18	4388	2.12
	144.7	3.81	4035	2.16
	162.8	3.50	3745	2.21
	178.9	3.26	3515	2.24
	195.5	3.04	3306	2.27
	211.2	2.91	3182	2.32
	229.1	2.75	3036	2.36
	247.3	2.60	2890	2.39
	265.7	2.46	2764	2.42
	283.8	2.35	2659	2.46
	297.4	2.33	2641	2.51
	301.7	2.26	2576	2.49
	313.3	2.22	2535	2.52

Discussion

Infrared and Conductance Data

The molar conductivities of the new complexes in nitromethane are characteristic of 1:3 electrolytes.¹⁰ The infrared spectra of the complexes suggest that the perchlorate is also exclusively ionic in the solid state.¹¹ In fact, the ν_3 and ν_4 vibrational modes of ionic (T_d) ClO₄ appear as single bands in the spectra of these complexes, while ν_1 is ir-inactive¹¹ (Table II). The phenNO complexes are devoid of ir bands associated with ν_{OH} and δ_{H-O-H} (water) modes. The bipyNO complexes exhibit strong ν_{OH} absorption at 3600–3450 cm⁻¹ (Cr(III) complex: 3610 sh, 3575 s, 3540 s, 3515 s, 3478 s, sh, 3450 m, sh; Fe(III) complex: 3620 sh, 3580 s, 3540 s, b, 3510 s, b, 3460 s-m, b, sh) and weak to medium δ_{H-O-H} bands at 1670–1660 and *ca*. 1630 cm⁻¹. Furthermore, the ν_3 and ν_4 (ClO₄) bands in the bipyNO complexes are broader than the correspond-

ing absorptions in the phenNO complexes. The ir evidence is in favor of the presence of lattice watter^{2,12} rather than coordinated aquo ligands.¹³ In fact 1,10-phenanthroline metal complexes, involving coordinated water, reportedly exhibit the v_{OH} bands at 3325–3200 cm⁻¹, and bands attributable to the rocking mode of the coordinated aquo ligand¹⁴ at 1000–700 cm^{-1.13} The ir spectra of the M(ClO₄)₃(M = Cr, Fe)–bipyNO complexes in the latter region are virtually identical to those of the water-free [M(bipyNO)₃](ClO₄)₂ (M = Mn, Fe, Co, Ni, Zn) and [Cu(bipyNO)₂](ClO₄)₂ chelate, previously reported.¹

The free ligands exhibit two v_{N-0} bands in the 1300-1200 cm⁻¹ region.^{4,5} These bands are shifted towards lower frequencies upon metal complex formation (Table II); this is suggestive of coordination through the N-O oxygen.^{1,2, 15, 16} The δ_{N-O} ligand mode also exhibits small shifts in the spectra of the metal com-plexes, as expected.^{1,2,15,16} Coordination through the nitrogen atom of the pyridine fragment of the ligands is suggested by frequency shifts of several ir bands associated with vibrations of this fragment^{1,2,4,5,17-19} (examples are shown in Table II). In the lower frequency infrared region metal-sensitive bands were tentatively assigned to ν_{M-N} and ν_{M-N} modes (Table II); these assignments were based on our previous work,^{1,2} and ir studies of Cr(III) and Fe(III) chelates with 2,2'bipyridine, 1,10-phenanthroline²⁰ and 2,2'-bipyridine N,N-dioxide.¹⁶ The overall ir spectral and conductance evidence suggests that the new complexes are of the types [M(bipyNO)₃](ClO₄)₃ · 2H₂O and [M(phenNO)₃] $(ClO_4)_3$ (M = Cr, Fe), involving tris-chelate complex cations; bipyNO and phenNO act as bidentate O,Nchelating agents, forming six-membered chelate rings (I and II, respectively). $[ML_3]^{3+}$ complex cations are also common in the cases of 2,2'-bipyridine, 1,10-phenanthroline^{21,22} and 2,2-bipyridine N,N-dioxide^{16,23} complex with Cr(III) and Fe(III) salts.

Electronic Spectra and Magnetic Moments

The Cr(III) complexes are magnetically normal (Table III) as is generally the case with monomeric, hexacoordinated compounds of this metal ion.²⁴ The Fe(III) compounds, however, show μ_{eff} values intermediate between those reported for high-spin and low-spin ferric complexes.²⁴ [FeL₃](ClO₄)₃ complexes are of the low-spin type for L = 2,2'-bipyridine or 1,10-phenanthroline ($\mu_{eff} = ca. 2.40 \text{ BM}$)^{22,25} and of the high-spin type for L = 2,2'-bipyridine N,N-dioxide

 $(\mu_{eff} = 6.13 \text{ BM})$.¹⁶ The mono-N-oxides under study are stronger ligands than the corresponding N,N-dioxides and weaker ligands than the parent bases^{1,2} (see also below). The room temperature magnetic moments (2.51-3.66 BM) of the ferric chelates may be interpreted in terms of either spin-free(S = 5/2)-spin-paired (S = 1/2) equilibria $({}^{6}A_{1} - {}^{2}T_{2}$ crossover situation) 26,27 or the existence of a ³T ground state involving three unpaired electrons (S = 3/2) and a strongly tetragonally distorted octahedral symmetry.²⁸ The data of Table IV demonstrates that we have a case of spin-free-spinpaired equilibria in the complexes under discussion. In fact, μ_{eff} variations with temperature shown in Table IV indicate that the new ferric complexes behave in the same manner as the corresponding N,N-dialkyldithiocarbamato chelates, which reportedly involve equilibria of this type.²⁶ In the latter complexes, μ_{eff} substantially increases (up to 2.5BM) as the temperature is increased from 85°K to 315°K,²⁶ while in the case of ferric complexes with a half-quenched spin (S = 3/2), μ_{eff} is relatively insensitive (increases of about 0.1 BM) to temperature variation, in the same temperature range.^{28, 29} It should be noted that in the case of ferric N,N-dialkyldithiocarbamates the possibility of existence of a mixed-spin state of variable character, instead of the simultaneous existence of two almost equienergetic ground states, has been advanced,^{30a} but not as vet substantiated by unequivocal experimental evidence.30b

The ultraviolet (200-350 nm) spectra of the free ligands are characterized by two or three strong bands, which are due to $\pi \rightarrow \pi^*$ transitions, ^{1,2,31,32} and shoulders at lower energies (probably due to $n \rightarrow \pi^*$ transitions³²) (Table III). The $\pi \rightarrow \pi^*$ transitions of bipyNO undergo larger shifts and splittings than the corresponding phenNO bands, upon metal complex formation (Table III).^{1, 2} This is largely due to the fact that bipyNO, as is also the case with 2,2'-bipyridine,^{21,31,33,34} apparently exists in the trans-form in the crystal⁴, but assumes a configuration, which is of necessity close to that of the cis-form in its metal chelates.¹ This configuration involves twisting to a certain extent of the two aromatic rings about the 2,2'-bond.^{16,21,31,34} PhenNO, on the other hand, would be expected to be rigidly held in the cis-configuration in the crystal and function as an essentially planar chelating agent,^{2,5} as is also the case with 1,10-phenanthroline.^{21,31,35} It should be mentioned at this point that several geometrical and optical isomers, and, in the case of bipyNO, which is probably nonplanar, diastereoisomers of the new metal chelates are possible.^{36–38} No attempts at establishing the existence of isomeric forms of these complexes were made during the present work.

Aromatic diimine^{21,31,39–42} and amine-N-oxide^{43,44} transition metal complexes are generally characterized by strong metal-to-ligand charge-transfer bands in the UV and part of the visible spectrum. As is the case with divalent 3d metal perchlorate chelates with bipyNO¹

and phenNO², the new complexes reported exhibit strong metal-to-ligand charge-transfer absorptions (Table III), which are responsible for the color of the ferric complexes. These bands overlap with the ${}^{4}A_{2g}(F) \rightarrow$ ${}^{4}T_{1g}(F)$ transition (in pure O_h symmetry) in the spectra of the Cr(III) complexes. The ${}^{4}A_{2g}(F) \rightarrow {}^{4}T_{2g}(F)$ trans sition is probably split (512,551 nm) in [Cr(bipyNO)₃] $(ClO_4)_3 \cdot 2H_2O$, but appears as a single band (521 nm) in the Cr(III)-phenNO chelate. The highest possible symmetry in the new cationic complexes is C_3 ; if a pure O_h symmetry was assumed, the Dq parameter for phenNO towards octahedral Cr(III) would be 1919 cm⁻¹. The corresponding Dq value for bipyNO would be in the 1800-1900 cm⁻¹ region. The position of the new ligands in the spectrochemical series, relative to 1,10-phenanthroline and 2,2'-bipyridine N,N-dioxide is (for octahedral Cr(III)): 1,10-phenanthroline (Dq = 2350 cm^{-1})³⁷ > phenNO > bipyNO > 2,2'-bipyridine N,N-dioxide $(Dq = 1495 - 1585 \text{ cm}^{-1})$.²³ As already mentioned, 2,2'-bipyridine N,N-dioxide forms a highspin [FeL₃]³⁺ complex,^{16,23} and 1,10-phenanthroline or 2,2'-bipyridine form low-spin [FeL₃]³⁺ complexes.^{22,25} The existence of spin-free-spin-paired equilibria in the mono-N-oxide ferric complexes was, therefore, expected, especially in view of the intermediate strength of these ligands, relative to the parent bases and the corresponding N,N-dioxides, and the fact that similar behavior has been reported for cationic Fe(III) complexes with weaker ligands (Dq towards octahedral Cr(III): N,Ndiethyl-dithiocarbamate 1560 cm⁻¹;45 2,6-lutidine Noxide 1686 cm⁻¹⁹) than the mono-N-oxides under study. 26, 27

Acknowledgement

The authors wish to thank Dr. L.J. Winters and D. Kandasamy for the preparation of one of the ligands (bipyNO) used in this study.

References

- 1 A.N. Speca, N.M. Karayannis, L.L. Pytlewski, L.J. Winters and D. Kandasamy, *Inorg. Chem.*, 12, 1221 (1973).
- 2 A. N. Speca, L. L. Pytlewski and N. M. Karayannis, J. Inorg. Nucl. Chem., in press.
- 3 E.J. Corey, A.L. Borror and T. Foglia, J. Org. Chem., 30, 288 (1965).
- 4 Z. Dega-Szafran, Rocz. Chem., 44, 2371 (1970).
- 5 Z. Dega-Szafran, ibid., 46, 827 (1972).
- 6 I. Muzase, Nippon Kagaku Zasshi, 77, 682 (1956); Chem. Abstr., 52, 9100a (1958).
- 7 R.A. Jones, B.D. Roney, W.H.F. Sasse and K.O. Wade, J. Chem. Soc. (B), 106 (1967).
- 8 G. Maerker and F.H. Case, J. Am. Chem. Soc., 80, 2745 (1958).

- 9 N.M. Karayannis, L.L. Pytlewski, and M. M. Labes, *Inorg. Chim. Acta*, 3, 415 (1969); N.M. Karayannis, C.M. Mikulski, J.V. Minkiewicz, L.L. Pytlewski and M.M. Labes, J. Less-Common Metals, 20, 29 (1970).
- 10 N.S. Gill and R.S. Nyholm, J. Chem. Soc., 3997 (1959).
- 11 B.J. Hathaway and A.E. Underhill, ibid., 3091 (1961).
- 12 M. Hass and G. B. B. M. Sutherland, Proc. Roy. Soc., 236A, 427 (1956); M. Atoji and R. E. Rundle, J. Chem. Phys., 29, 1306 (1958).
- 13 S. Burchett and C.E. Meloan, J. Inorg. Nucl. Chem., 34, 1207 (1972).
- 14 I. Nakagawa and T. Shimanouchi, Spectrochim. Acta, 20, 429 (1964); J. Fujita, K. Nakamoto and M. Kobayashi, J. Am. Chem. Soc., 78, 3963 (1956).
- 15 S. Kida, J.V. Quagliano, J.A. Walmsley and S.Y. Tyree, Spectrochim. Acta, 19, 189 (1963); Y. Kakiuti, S. Kida and J.V. Quagliano, ibid., 19, 201 (1963).
- 16 P.G. Simpson, A. Vinciguerra and J.V. Quagliano, *Inorg. Chem.*, 2, 282 (1963); A. Vinciguerra, P.G. Simpson, Y. Kakiuti and J.V. Quagliano, *ibid.*, 2, 286 (1963).
- 17 R.G. Inskeep, J. Inorg. Nucl. Chem., 24, 763 (1962).
- 18 A. A. Schilt and R. C. Taylor, ibid., 9, 211 (1959).
- 19 S.P. Sinha, Spectrochim. Acta, 20, 879 (1964); W. Beck and E. Schuierer, Chem. Ber., 95, 3048 (1962).
- 20 Y. Saito, J. Takemoto, B. Hutchinson and K. Nakamoto, Inorg Chem., 11, 2003 (1972).
- 21 W. W. Brandt, F.P. Dwyer and E.C. Gyarfas, *Chem. Rev.*, 54, 959 (1954); W.R. McWhinnie and J.D. Miller, *Adv. Inorg. Chem. Radiochem.*, 12, 135 (1969), and references therein.
- 22 F.H. Burstall and R.S. Nyholm, J. Chem. Soc., 3570 (1952).
- 23 S.K. Madan and W.E. Bull, J. Inorg. Nucl. Chem., 26, 2211 (1964).
- 24 B.N. Figgis and J. Lewis, Progr. Inorg. Chem., 6, 37 (1964).
- 25 B.N. Figgis, Trans. Faraday Soc., 57, 204 (1961).
- 26 L. Cambi and L. Szegö, Ber. Deutsch. Chem. Ges., 64, 2591 (1931); A.H. Ewald, R.L. Martin, I.G. Ross and A.H. White, Proc. Roy. Soc., 280A, 235 (1964); A.H. White, R. Roper, E. Kokot, H. Waterman and R.L. Martin, Austral. J. Chem., 17, 294 (1964); E. Kokot and G. Ryder, *ibid.*, 24, 649 (1971).

- 27 N.M. Karayannis, C.M. Mikulski, L.L. Pytlewski and M.M. Labes, J. Inorg. Nucl. Chem., 34, 3139 (1972).
- 28 M.B. Welch, M.C. Rose and R.O. Ragsdale, 165th National Meeting, American Chemical Society, Dallas, Texas, April 8–13, 1973; Abstracts, No. INOR 114; details of this work were provided by Professor Ragsdale during a talk at Drexel University in April 1973.
- 29 R.L. Martin and A.H. White, Inorg. Chem., 6, 712 (1967).
- 30 (a) G. Harris, *Theor. Chim. Acta*, 5, 379 (1966); 10, 119 (1968): (b) J.G. Leipoldt and P. Coppens, *Inorg. Chem.*, 12, 2269 (1973).
- 31 P. Krumholz, J. Am. Chem. Soc., 73, 3487 (1951); 75, 2163 (1953); Inorg. Chem., 4, 612 (1965); K. Sone, P. Krumholz and H. Stammreich, J. Am. Chem. Soc., 77, 777 (1955); K. Nakamoto, J. Phys. Chem., 64, 1420 (1960).
- 32 A. Kiss and J. Császár, Acta Chim. Acad. Sci. Hung., 38, 404, 421 (1963).
- 33 L.L. Merritt and E.D. Schroeder, Acta Crystallogr., 9, 801 (1956); F. Bertinotti, A.M. Liquori and R.Pirisi Gazz. Chim. Ital., 86, 893 (1956).
- 34 G. A. Barclay, B.F. Hoskins and C.H.L. Kennard, J. Chem. Soc., 5691 (1963); I.M. Procter and F.S. Stephens, *ibid.*, (A), 1248 (1969).
- 35 J.V. Rund, Inorg. Chem., 7, 24 (1968).
- 36 I. Bertini, D. Gatteschi and L.J. Wilson, Inorg. Chim. Acta, 4, 629 (1970).
- 37 C.S. Lee, E.M. Gorton, H.M. Neumann and H.R. Hunt, Jr., *Inorg. Chem.*, 5, 1397 (1966).
- 38 C.J. Hawkins, "Absolute Configuration of Metal Complexes", Interscience, New York, N.Y., 1971; A.D. Liehr, *Transition Metal Chem.*, 2, 165 (1966); R.H. Holm, G.W. Everett, Jr., and A. Chakravorty, *Progr. Inorg. Chem.*, 7, 83 (1966); and references therein.
- 39 J. Hidaka and B. E. Douglas, Inorg. Chem., 3, 1180 (1964).
- 40 R.A. Palmer and T.S. Piper, *ibid.*, 5, 864 (1966).
- 41 I. Hanazaki and S. Nagakura, ibid., 8, 648 (1969).
- 42 P. Day and N. Sanders, J. Chem. Soc., (A), 1530, 1536 (1967).
- 43 R.L. Carlin, J. Am. Chem. Soc., 83, 3773 (1961).
- 44 W. Byers, B. Fa-Chun Chou, A. B. P. Lever and R. V. Parish, *ibid.*, 91, 1329 (1969).
- 45 A.A.G. Tomlinson, J. Chem. Soc., (A), 1409 (1971).