The Synthesis and Characterization of an Oxymolybdenum(V) Complex of 1,3-Bis(methylseleno)propane

C. A. MCAULIFFE

Chemistry Department of Auburn University, Auburn University, Ala. 36849, U.S.A.

and A. WERFALLI

University of Manchester, Institute of Science and Technology, Manchester, M60 IQD, U.K.

Received August 6, 1981

Recent interest in the chemical properties [1, 2], biological functions [3-5] and spectroscopic aspects [6-8] of selenium has motivated us to report here the preparation and characterization of a six-coordinate molybdenum(V) complex obtained from the reaction of MoOCl₃ or MoOCl₃(THF)₂ (THF = tetrahydrofuran) with 1,3-bis(methylseleno)propane, L. Although a few studies of nickel(II) and palladium-(II) [9-11] complexes of selenoethers have been reported, there are to our knowledge no molybdenum complexes with Se donors known.

Experimental

All solvents were distilled under dinitrogen prior to use and all manipulations were performed under an inert atmosphere. The ligand, $MeS(CH_2)_3SMe$, was synthesized as previously described [11]. Vacuum line and Schlenk techniques were used in complex preparations; $MoOCl_3(THF)_2$ was prepared as previously described [12].

The complex was isolable from reaction of either MoOCl₃ or MoOCl₃(THF)₂; here we give details of the latter preparative route: the ligand MeSe(CH₂)₃-SeMe (0.46 g, 2.0 mmol) and MoOCl₃(THF)₂ (0.75 g, 2.1 mmol) were stirred in a 3:1 v/v mixture of toluene/dichloromethane (75 cm³) in a rotoflow reactor for 24 h. After filtration to remove traces of unreacted $MoOCl_3(THF)_2$ the solution was concentrated to 20 cm³ by application of a vacuum. On cooling in an ice bath for 3 h a fine green precipitate was deposited. This was filtered, washed with n-hexane $(3 \times 10 \text{ cm}^3)$ and dried in vacuo for 3 h. Yield: 48%. Anal. Found: Mo, 21.1; Cl, 23.7; C, 13.6; H, 3.1%. MoOCl₃C₅H₁₂Se₂ requires: Mo, 21.4; Cl, 23.7; C, 13.4; H, 3.0%. Physical methods are as previously described [13].

Results and Discussion

The MoOLCl₃ (L = CH₃Se(CH₂)₃SeCH₃) complex is preparable from the reaction of either MoOCl₃ or MoOCl₃(THF)₂ with the ligand in a mixed toluene/dichloromethane solvent. We were somewhat surprised to discover that both these salts reacted with the ligand at approximately the same rate and that yields of MoOLCl₃ were almost identical for the two reactions. We have previously observed that MoOCl₃(THF)₂ is preferable to the insoluble polymeric [MoOCl₃]_n salt [14].

The green MoOLCl₃ is quite stable in all but very moist air; its room temperature magnetic moment, 1.72 $\mu_{\rm B}$, is consistent with values previously reported for molybdenum(V) complexes [15]. The mull infrared spectrum of the complex exhibits a sharp ν (Mo=O) band at 950 cm⁻¹, indicating the presence of a terminal Mo=O linkage [15]. Moreover, the energy of this band is consistent with the complex being hexacoordinate; it is known that in pentacoordinate complexes this band appears ca. 1000 cm^{-1} [16]. The presence of only one ν (M=O) band suggests that only one isomer is present [13]. A prominent band at 330 cm⁻¹ is assignable to ν (Mo-Cl), the width of its suggesting that it may be due to cis chlorines. An ill-defined shoulder on this main absorption may be due to the chlorine trans to the Mo=O group, this Mo-Cl bond being lengthened by trans influence of the molybdenyl group [15]. An absorption at 595 cm⁻¹ in the free ligand appears at 590 cm^{-1} in the complex and is identified as ν (C-Se) and ρ (CH₃) is present *ca*. 970 cm⁻¹ as a weak absorption in the complex, shifted from 985 cm⁻¹ in the free ligand.

The room temperature e.p.r. spectrum of Mo-OLCl₃ in dichloromethane has one band at g = 1.953, A = 52G, consistent with the presence of molybdenum(V). Selenium coupling is not observed, suggesting that ⁷⁷Se < 30G. Some poorly resolved fine structure is observed when the spectra are recorded in the double derivative mode; this is a septet of relative line intensities 1:2:3:4:2:1, with a splitting of 2.5 G, consistent with two chlorines being in a similar environment.

On the basis of this evidence the complex [Mo-OLCl₃] is assigned the hexacoordinate *fac* structure shown.

References

- 1 R. D. Kroshefsky, R. Weiss and J. G. Verkade, Inorg. Chem., 18, 469 (1979).
- 2 D. H. Brown, R. J. Cross and R. Keat, J. Chem. Soc. Dalton, 871 (1980).
- 3 M. A. Bobrik, E. J. Laskowski, R. W. Johnson, W. O. Gillum, J. M. Berg, K. O. Hodgson and R. H. Holm, *Inorg. Chem.*, 17, 1502 (1978).
- 4 J. W. Forstrum and A. L. Tappel, J. Biol. Chem., 8, 2888 (1979).
- 5 P. Downs, C. A. McAuliffe and M. R. C. Winter, *Inorg.* Persp. Biol., Med., 2, 190 (1979).
- 6 I. D. Rae, Aust. J. Chem., 32, 567 (1979).
- 7 E. W. Abel, M. Booth and K. G. Orrell, J. Chem. Soc. Dalton, 1994 (1979).

- Inorganica Chimica Acta Letters
- 8 A. J. Montana, N. Zumbulyadis and B. P. Dailey, J. Am. Chem. Soc., 99, 4290 (1977).
- 9 E. E. Aynsley, N. N. Greenwood and J. B. Leach, *Chem. and Ind.*, 397 (1966).
- 10 N. N. Greenwood and G. Hunter, J. Chem. Soc. (A), 1520 (1967); 929 (1969).
- 11 W. Levason, C. A. McAuliffe and S. G. Murray, J. Chem. Soc. Dalton, 269 (1976).
- 12 D. L. Kepert and R. Mandyczewsky, J. Chem. Soc. (A), 530 (1968);
- B. J. Sayle, Ph.D. Thesis, University of Manchester, 1977.
 I3 J. R. Dilworth, C. A. McAuliffe and B. J. Sayle, J. Chem. Soc. Dalton, 849 (1977).
- 14 W. E. Hill, N. Atabay, C. A. McAuliffe, F. P. McCullough and S. M. Razzoki, *Inorg. Chim. Acta*, 35, 35 (1979); and references therein.
- 15 G. I. Stiefel, Prog. Inorg. Chem., 22, 1 (1977).
- 16 C. D. Garner, L. H. Hill, F. E. Mabbs, D. L. McFadden and A. T. McPhail, J. Chem. Soc. Dalton, 853 (1977).