Formation of Roussin's Methyl Ester from $Bis(\mu-methylthio)bis(tricarbonyliron)$

ANTHONY R. BUTLER, CHRISTOPHER GLIDEWELL* and JOSEPH McGINNIS

Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.

Received September 9, 1981

Bis(μ -organylthio)-bis(tricarbonyliron) complexes, (RS)₂Fe₂(CO)₆ (R = alkyl or aryl) are readily accessible from dodecacarbonyltriiron [1-3]. When R = CH₃ or C₂H₅, two isomers syn and anti are separable by chromatography, but an equilibrium mixture is rapidly established in solution*: the structure of anti-(EtS)₂Fe₂(CO)₆ has been established [4] by X-ray analysis. By contrast, the isoelectronic nitrosyl complexes, (RS)₂Fe₂(NO)₄, which are usually prepared by the action of nitric oxide on a mixture of RSH and an iron(II) salt [5], appear to exist in only one isomeric form: an X-ray analysis of (EtS)₂Fe₂(NO)₄ [6] showed the overall molecular symmetry to be C_{2h} (analogous to anti) rather than C_{2v} (analogous to syn).

We show here, firstly that the action of nitric oxide on $(MeS)_2 Fe_2(CO)_6$ yields $(MeS)_2 Fe_2(NO)_4$, despite statements to the contrary in the literature [7], and secondly that irrespective of whether pure *anti* or pure *syn* carbonyl is employed, the product is always the same, presumably C_{2h} , nitrosyl isomer.

Treatment of either isomer in N₂-purged CH_2Cl_2 solution with NO, under dinitrogen at -80 °C, fol-

lowed by removal of the solvent by freeze-drying, yielded dark-red crystals which were identical (i.r., m.p., mass spectrum) with authentic $(MeS)_2 Fe_2$ - $(NO)_4$. The products were each homogeneous by t.l.c., and showed only one singlet at δ 2.83 p.p.m. in the ¹H n.m.r. spectrum. When the mixed isomers of $(MeS)_2 Fe_2(CO)_6$ (equilibrium composition) were treated with NO, again a single product $(MeS)_2 Fe_2$ - $(NO)_4$ was obtained, homogeneous by t.l.c. and identical with authentic material.

In $(RS)_2 Fe_2(CO)_6$ the equilibrium constants for isomerisation are very similar for $R = CH_3$ or C_2H_5 [3]; if it is assumed that this is true also for $(RS)_2$ - $Fe_2(NO)_4$, then it follows that the single isomer of $(MeS)_2 Fe_2(NO)_4$ is the C_{2h} isomer as found for $(EtS)_2 Fe_2(NO)_4$ [6]. We note in addition that $(MeS)_2 Fe_2(NO)_4$ [6]. We note in addition that $(MeS)_2 Fe_2(NO)_4$ has an R_f value (silica-40/60)petrol) identical to that of $anti-(MeS)_2 Fe_2(CO)_4$ whereas that of $syn-(MeS)_2 Fe_2(CO)_6$ is ca. 0.7 that of the anti isomer. If $syn-(MeS)_2 Fe_2(NO)_4$ does in fact yield the C_{2v} isomer of $(MeS)_2 Fe_2(NO)_4$ as the primary product at -80 °C, this must be very short lived, as it cannot be detected subsequently at room temperature.

Acknowledgement

We thank the Carnegie Trust for support.

References

- 1 R. B. King, J. Am. Chem. Soc., 84, 2460 (1962).
- 2 G. Bor, J. Organometal. Chem., 11, 195 (1968).
- 3 L. Maresca, F. Greggio, G. Sbrignadello and G. Bor, Inorg. Chim. Acta, 5, 667 (1971).
- 4 L. F. Dahl and C. H. Wei, Inorg. Chem., 2, 328 (1963).
- 5 Wang Guang-hui, Zhang Wen-xin, and Chai Wen-gang, Acta Chimica Sinica, 38, 95 (1980).
- 6 J. T. Thomas, J. H. Robertson and E. G. Cox, Acta Cryst., 11, 599 (1958).
- 7 See for example: H. J. Emeleus and J. S. Anderson, 'Modern Aspects of Inorganic Chemistry', 3rd Edition, Routledge and Kegan Paul, London (1960) p. 267.

^{*}Author to whom correspondence should be addressed.

Formation of an equilibrium mixture from either the syn or the anti isomer require 2-3 days at 40 °C [3], or 15 minutes in refluxing benzene: for $R = CH_3$, K = [anti]/[syn] = 3.2(2) in hexane [3], and K = 1.4(1) in benzene.