The Molecular and Crystal Structure of a 1:1-Adduct of AsI_3 , prepared from 1,3,5,7-(tetramethyl)-2,4,6, 8,9,10-(hexathia)adamantane

RÜDIGER KNIEP* and HORST DIETER RESKI

Institut für Anorganische Chemie und Strukturchemie der Universität Düsseldorf, Universitätsstr. 1, 4000 Düsseldorf, F.R.G.

Received September 5, 1981

In order to prepare the ternary sulfoidide AsSI [1] the reaction of AsI_3 with thioacetic acid [2] was tested:

$$AsI_3 + CH_3COSH + H_2O \rightarrow AsSI + CH_3COOH + HI$$
(I)

A mixture of thioacetic acid and powdered AsI₃ was held at room temperature in a closed vessel for four weeks. After a period of 9 days, compact orangered crystals were grown on top of the AsI₃-solid; in the course of five more days they were partially transformed to yellow monoclinic plates. Finally a third phase was observed, as white platey crystals. The three different phases were isolated (they can be recrystallized in ether and ethanol) and shown by energy-dispersive X-ray analysis to contain significant amounts of sulfur. Arsenic and iodine were only detected in the orange-red and yellow crystals, the latter containing smaller amounts of these elements. In accordance with this observation and AsI3-ion peak was present only in the mass spectra of the orange-red and yellow phases. As confirmed by a complete crystal structure analysis of the orange-red crystals (see below), the compound is a 1:1-adduct of AsIa with 1,3,5,7-(tetramethyl)-2,4,6,8,9,10-(hexathia)-adamantane. This led to the positive interpretation of a respective mass-peak as belonging to the tetramethyl-hexathia-adamantane molecular ion; this peak is also present in the mass-spectra of the yellow and the white crystals. With the additional consideration of the melting point (224 °C; DTAinvestigation), the white crystals were identified as pure tetramethyl-hexathia-adamantane. The yellow crystals (mp 109 °C) are assumed to be an adduct of AsI3 with tetramethyl-hexathia-adamantane, but in contrast to the orange-red 1:1-compound with a respective molar ratio <1.

Formation of tetramethyl-hexathia-adamantane thus probably takes place as follows, and not as suggested in reaction I:

Reaction II is supposed to be catalysed by HI, which is formed simultaneously by reaction of AsI_3 with water. A similar catalytic effect is observed in the presence of HBr [3].

Single crystals of AsI3 ·tetramethyl-hexathiaadamantane were investigated by X-ray methods: $AsI_3 \cdot (CH_3)_4 C_4 S_6$; monoclinic $P2_1/c$; a = 1119.9(2), $b = 1183.9(2), c = 1572.4(2) \text{ pm}, \beta = 103.06(1)^{6};$ Z = 4; $D_{obs.} = 2.53$, $D_{calc.} = 2.47$ g cm⁻³. 3583 independent reflections up to $2\theta = 50^{\circ}$ (MoK α) were collected on an automated diffractometer (Syntex P2₁); 2713 reflections with $I > 1.96\sigma_I$ were classified as observed. The phase problem was solved by direct methods (E-XTL). Including an empirical correction for absorption, the anisotropic refinement of the heavy-atom parameters was finished with R = 7.9%. Five of the twelve hydrogen atoms were located in a Difference-Fourier-Map; positions of the remaining seven hydrogens were calculated. The final refinement was carried out with fixed parameters of all hydrogen atoms (R = 7.8%). A list of the observed and calculated structure factors, as well as anisotropic thermal parameters of the heavy-atoms and fractional coordinates of the hydrogen positions, can be obtained from the authors. The final non-hydrogen atomic parameters are given in Table I.

Figure 1 shows the molecular structure of the adduct of AsI_3 with 1,3,5,7-(tetramethyl)-2,4,6,8,9, 10-(hexathia)-adamantane. Bond lengths and bond angles (minimum and maximum values) are given in Table II. The arsenic atom bond to three terminal iodine atoms in a slightly distorted trigonal-pyramidal arrangement with a mean bond length of 257.6 pm; this value is in good agreement with the respective distance in the crystal structure of AsI_3 (259.1 pm, [4]). The coordination-sphere of the arsenic atom is modified to a distorted octahedron by additional contacts to three of the six sulfur atoms of the adamantane molecule. Orientation of the remaining lone-pair electrons of the arsenic atom is assumed to be towards the centre of the six-membered ring.

^{*}Author to whom correspondence should be addressed.

TABLE I. Positional Parameters of the Non-Hydrogen Atoms in the Crystal Structure of $AsI_3 \cdot 1, 3, 5, 7$ -(tetramethyl)-2,4,6, 8,9,10-(hexathia)-adamantane. Notation of the Atoms is in Accordance with Fig. 1.

Atom	x	у	Z
As	0.5834(1)	0.2550(1)	0.9479(1)
I(1)	0.5491(1)	0.1281(2)	0.8116(1)
I(2)	0.5093(1)	0.4442(1)	0.8733(1)
I(3)	0.3925(2)	0.1970(2)	1.0032(1)
S(1)	0.8695(3)	0.3356(3)	0.9708(2)
S(2)	1.0331(4)	0.3923(3)	1.1461(3)
S(3)	0.9870(4)	0.1590(4)	1.2133(2)
S(4)	0.8229(3)	0.1030(3)	1.0376(2)
S(5)	1.0830(3)	0.1837(3)	1.0492(2)
S(6)	0.7733(3)	0.3130(3)	1.1367(2)
C(1)	0.9223(11)	0.1901(11)	0.9893(9)
C(2)	0.8750(12)	0.3870(9)	1.0813(9)
C(3)	1.0763(12)	0.2437(14)	1.1565(11)
C(4)	0.8331(12)	0.1698(11)	1.1441(8)
C(5)	0.9229(15)	0.1432(13)	0.8980(9)
C(6)	0.8290(16)	0.5117(11)	1.0727(12)
C(7)	1.2112(14)	0.2415(17)	1.2095(12)
C(8)	0.7513(15)	0.0990(15)	1.1888(11)

Fig. 1. Molecular structure of the 1:1-adduct of AsI_3 with 1,3,5,7-(tetramethyl)-2,4,6,8,9,10-(hexathia)-adamantane. Notation of the atoms is in accordance with Table I.

Figure 2 shows the arrangement of the molecular adducts in the crystal structur of $AsI_3 \cdot 1,3,5,7$ -(tetramethyl)-2,4,6,8,9,10-(hexathia)-adamantane, as a layer-structure with alternating layers of AsI_3 molecules and adamantane molecules parallel to the (100)-plane.

Acknowledgements

The authors wish to thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for supporting this work.

TABLE II. Bond Lengths (pm) and Bond Angles (°) in AsI₃. 1,3,5,7-(tetramethyl)-2,4,6,8,9,10-(hexathia)-adamantane (minimum and maximum values). E.s.d. s except for [] are 0.2-2.3 pm and $0.1-1.1^{\circ}$.

Bond Lengths		
As-I	257.5-257.7	
As-S	327.4-331.0	
S-C	179.1-184.7	
C-C	152.5-155.9	
[C-H	91-109]	
Bond Angles		
I-As-I	98.4-100.3	
I-As-S	89.5-111.7	
	144.3-154.7	
S-As-S	55.1-55.2	
C-S-C	102.5-102.9	
S-C-S	110.7-114.7	
S-C-C	104.4-108.6	
C-C-H	92-116	
H-C-H	100-123	

Fig. 2. Arrangement of the molecular adducts in the crystal structure of $AsI_3 \cdot 1,3,5,7$ -(tetramethyl)-2,4,6,8,9,10-(hexathia)-adamantane. Projection along the crystallographic b-axis direction.

References

- 1 R. Kniep and H. D. Reski, Angew. Chem. Int. Ed. Engl., 20, 212 (1981).
- 2 N. Tarugi, Gazz. Chim., 27(2), 20 (1897).
- 3 H. Stetter, Angew. Chem., 66, 217 (1954).
- 4 R. Enjalbert and J. Galy, Acta Cryst., B36, 914 (1980).