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Recently, Wagner and Somorjai [l] have shown 
that the photocatalytic decomposition of water into 
hydrogen and oxygen takes place on metal-free 
SrTiO, crystals in aqueous alkaline solution. Under 
illumination the formation of surface Ti3+ ions has 
been demonstrated by spectroscopic techniques [2] 
and the rate of hydrogen photogeneration was found 
to increase with increasing concentration of hy- 
droxide ion in aqueous solution [ 1 ] . Van Damme and 
Hall [3] have proposed that the surface Ti3+ ions are 
responsible for the generation of hydrogen. However, 
the role of hydroxide in the photocatalytic de- 
composition of water is open to discussion. In con- 
nection with the mechanism of photocatalytic 
hydrogen production from water over SrTi03 
crystals, we wish to report a strong effect of hy- 
droxide concentration on the rate of hydrogen evolu- 
tion from aqueous alkaline solution of Ti3+ ions. 
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Fig. 1. Time dependence of Hz evolution from aqueous 
alkaline solution of TiC13 in different concentrations of 
NaOH at 30 “C under argon. Reaction conditions: TiC13 = 
0.011 M (0.23 mmol), total aqueous solution = 20.5 cm3, 
and (0) NaOH = 0.011 M, (A) NaOH = 0.022 M; (0) NaOH = 
0.033 M, (0) NaOH = 0.044 M, (7) NaOH = 0.056 M, (0) 
NaOH = 0.49 M; (m) NaOH = 5.0 M. 

An aqueous solution of Ti3+ was prepared by dis- 
solving TiC13 in carefully deoxygenated water. The 
concentration of Ti3+ in the solution was determined 
by titration with KMn04 solution. A typical experi- 
mental procedure for Hz evolution is as follows. A 
20 cm3 portion of deoxygenated aqueous NaOH solu- 
tion of 0.011 to 5.0 M introduced into a reaction 
flask of 98 cm3 total capacity with a magnetic stirrer, 
and was kept at 30 “C under an atmosphere of argon 
or acetylene. To initiate the reaction, 0.5 cm3 of 0.46 
M aqueous solution of Ti3+ was injected through a 
side arm sealed with silicon rubber. Samples of the 
gases above the reaction solution were withdrawn at 
intervals by a syringe and analyzed by gas chro- 
matography, using a 2 m column of active carbon for 
Hz analysis and a 2 m column of Porapak N for 
hydrocarbon analysis. 
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The addition of Ti3+ into aqueous alkaline solution 
resulted in the evolution of Hz and the formation of 
TiO*, as originally described by Jorgensen [4]. Figure 
1 shows the time dependence of Hz yield at 30 “C 
under an argon atmosphere. The initial rate of Hz 
evolution increases with increasing concentration of 
NaOH added. At [OH-] /[Ti3’] ratios above 4.0, the 
total yield of Hz was confirmed to reach 50 mol% of 
Ti3+, corresponding to 100% of the theoretical 
electron transfer efficiency. Figure i shows the initial 
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Fig. 2. Rates of Hz evolution as a function of NaOH concen- 
tration. (0); Initial rate of Hz evolution from aqueous 
alkaline solution of TiC13 at 30 “C observed in the present 
work. (0,~); Rates of Hz photoproduction from prereduced 
platinized (0) and metal-free (0) SrTi03 crystals in aqueous 
alkaline solution at 44 “C under UV illumination, as reported 
by Wagner and Somorjai [ 11. 
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rate of Hz evolution from aqueous alkaline solution 
of Ti3+ as a function of NaOH concentration, which is 
quite similar to the hydroxide dependence on the rate 
of Hz photogeneration on SrTi03 crystals observed 
by Wagner and Somojai [l] : see Fig. 2. This parallel 
kinetic behavior, as can be seen from Fig. 2, seems to 
indicate a direct participation of hydroxide ions in 
the rate-limiting step of Hz formation over Ti3+ ions 
in both systems. In the presence of acetylene mole- 
cules, the reduction of acetylene to ethylene 
competed with the Hz evolution in the aqueous 
alkaline solution of Ti3+ at 30 “C, as shown in Fig. 3. 
This result may be comparable to the photoreduction 
of acetylene to ethylene observed on TiOz powders 
containing chemisorbed water [5, 61. 
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Fig. 3. CzH4 production of Hz evolution from aqueous 

alkaline solution of TiCI at 30 “C under 1.0 bar of C2H2. 

Reaction condition: TiCI = 0.017 M (0.36 mmol), NaOH = 

0.5 IV, and total aqueous solution = 2 1 cm3. 

The absorption spectrum of a violet aqueous solu- 
tion of TiC13 showed a distinct double structure of 
17400 cm-’ (E 2.7) and 20300 cm-’ (E 4.0) in the 
visible region, which is consistent with that of the 
complex formulated in solution as Ti(H,O)p [7]. 
The addition of NaOH into the violet aqueous solu- 
tion of Ti3+ resulted in rapid formation of a dark 

violet-brown precipitate at [OH-] /[Ti3’] ratios 
above 3.0. The formation of a dark violet brown 
precipitate, which has been formulated as Tiz03* 
xHzO by Allen er al. [8], was apparently complete 
within a few minutes, even at the [OH] /[Ti3+] ratio 
of 3.0 where the rate of Hz evolution was relatively 
slow. The Tiz03*xHz0 obtained was found to be 
inert in pure water, but it rapidly oxidized to form 
white TiOZ and Hz when immersed in a concentrated 
aqueous alkaline solution of 1.0 M. From these 
results, we have concluded that hydroxide ions are 
directly involved in a rate-limiting step, as expressed 

by eq (1). 

Tiz03(Hz0), + OH ---+ 2Ti02 + H2 + (x - 1)HsO + 

OH- (1) 

Such a direct kinetic role for the hydroxide ion 
appears to account for the strong dependence of 
hydroxide concentration on the rate of Hz photo- 
generation observed on the SrTiO, crystals under 
W illumination. 
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