Hydrogen Evolution from Aqueous Alkaline Solution of Titanium(IlI)

YOSHIHARU DO1 and MITSUYOSHI TAMAKI

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152. Japan

Received October 2, 1981

Recently, Wagner and Somorjai [l] have shown that the photocatalytic decomposition of water into hydrogen and oxygen takes place on metal-free SrTiO₃ crystals in aqueous alkaline solution. Under illumination the formation of surface $Ti³⁺$ ions has been demonstrated by spectroscopic techniques [2] and the rate of hydrogen photogeneration was found to increase with increasing concentration of hydroxide ion in aqueous solution [1 *]* . Van Damme and Hall $[3]$ have proposed that the surface $Ti³⁺$ ions are responsible for the generation of hydrogen. However, the role of hydroxide in the photocatalytic decomposition of water is open to discussion. In connection with the mechanism of photocatalytic hydrogen production from water over $SrTiO₃$ crystals, we wish to report a strong effect of hydroxide concentration on the rate of hydrogen evolution from aqueous alkaline solution of $Ti³⁺$ ions.

An aqueous solution of Ti^{3+} was prepared by dissolving $TiCl₃$ in carefully deoxygenated water. The concentration of $Ti³⁺$ in the solution was determined by titration with $KMnO₄$ solution. A typical experimental procedure for H_2 evolution is as follows. A 20 cm^3 portion of deoxygenated aqueous NaOH solution of 0.011 to 5.0 *M* introduced into a reaction flask of 98 cm^3 total capacity with a magnetic stirrer, and was kept at 30 "C under an atmosphere of argon or acetylene. To initiate the reaction, 0.5 cm^3 of 0.46 *M* aqueous solution of Ti^{3+} was injected through a side arm sealed with silicon rubber. Samples of the gases above the reaction solution were withdrawn at intervals by a syringe and analyzed by gas chromatography, using a 2 m column of active carbon for Hz analysis and a 2 m column of Porapak N for hydrocarbon analysis.

The addition of $Ti³⁺$ into aqueous alkaline solution resulted in the evolution of $H₂$ and the formation of $TiO₂$, as originally described by Jorgensen [4]. Figure 1 shows the time dependence of H_2 yield at 30 °C under an argon atmosphere. The initial rate of H_2 evolution increases with increasing concentration of NaOH added. At $[OH^-]/[Ti^{3+}]$ ratios above 4.0, the total yield of $H₂$ was confirmed to reach 50 mol% of Ti3+, corresponding to 100% of the theoretical electron transfer efficiency. Figure $\hat{2}$ shows the initial

120 100 mmo₁ $H₂$ Evolution / 10^{-3} r α 20 $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\overline{0}$ Time / min

Fig. 1. Time dependence of H_2 evolution from aqueous alkaline solution of $TiCl₃$ in different concentrations of NaOH at 30 °C under argon. Reaction conditions: TiCl₃ = 0.011 *M* (0.23 mmol), total aqueous solution = 20.5 cm^3 , and (0) NaOH = $0.011 M$; (\triangle) NaOH = $0.022 M$; (\Box) NaOH = 0.033 M; (a) NaOH = 0.044 M; (∇) NaOH = 0.056 M; (\odot) $NaOH = 0.49 M$; (m) $NaOH = 5.0 M$.

Fig. 2. Rates of H_2 evolution as a function of NaOH concentration. (\bullet); Initial rate of H_2 evolution from aqueous allon. \bullet , initial fact of $\frac{1}{2}$ colution from aqueous would solution of Ticky at 50 °C observed in the present work. (O, \Box) ; Rates of H₂ photoproduction from prereduced platinized (O) and metal-free (\Box) SrTiO₃ crystals in aqueous alline solution and include \cup if \cup is \cup if \cup if by Wagner and Somorjai [11.

0020-1693/82/0000-0000/\$0.275 0 Elsevier Sequoia/Printed in Switzerland

rate of $H₂$ evolution from aqueous alkaline solution of $Ti³⁺$ as a function of NaOH concentration, which is quite similar to the hydroxide dependence on the rate of H_2 photogeneration on SrTiO₃ crystals observed by Wagner and Somoriai $[1]$: see Fig. 2. This parallel kinetic behavior, as can be seen from Fig. 2, seems to indicate a direct participation of hydroxide ions in the rate-limiting step of H_2 formation over Ti^{3+} ions in both systems. In the presence of acetylene molecules, the reduction of acetylene to ethylene competed with the H_2 evolution in the aqueous alkaline solution of Ti^{3+} at 30 °C, as shown in Fig. 3. This result may be comparable to the photoreduction of acetylene to ethylene observed on $TiO₂$ powders containing chemisorbed water [5, 6].

alkaline solution of TiCI at 30 °C under 1.0 bar of C.H. R_{c} and R_{c} conditions: TiCI = 0.017 M (0.36 mmol), NaOH = Reaction condition: TiCl₃ = 0.017 *M* (0.36 mmol), NaOH = 0.5 *M*, and total aqueous solution = 21 cm³.

The absorption spectrum of a violet aqueous solution of TiCl₃ showed a distinct double structure of 17400 cm⁻¹ (ϵ 2.7) and 20300 cm⁻¹ (ϵ 4.0) in the visible region, which is consistent with that of the complex formulated in solution as $Ti(H₂O)₆³⁺$ [7]. The addition of NaOH into the violet aqueous solution of Ti^{3+} resulted in rapid formation of a dark

violet-brown precipitate at $[OH^-]/[Ti^{3+}]$ ratios above 3.0. The formation of a dark violet brown precipitate, which has been formulated as $Ti₂O₃$. $xH₂O$ by Allen *et al.* [8], was apparently complete within a few minutes, even at the $[OH^-]/[Ti^{3+}]$ ratio of 3.0 where the rate of $H₂$ evolution was relatively slow. The $Ti_2O_3 \cdot xH_2O$ obtained was found to be inert in pure water, but it rapidly oxidized to form white $TiO₂$ and $H₂$ when immersed in a concentrated aqueous alkaline solution of 1.0 M . From these results, we have concluded that hydroxide ions are directly involved in a rate-limiting step, as expressed by eq (1) .

$$
Ti_2O_3(H_2O)_x + OH^- \longrightarrow 2TiO_2 + H_2 + (x - 1)H_2O + OH^-
$$
 (1)

Such a direct kinetic role for the hydroxide ion appears to account for the strong dependence of hydroxide concentration on the rate of H_2 photogeneration observed on the $SrTiO₃$ crystals under *W* illumination.

Acknowledgement

We wish to thank Professors Tominaga Keii and Yoshio Ono for stimulating and helpful discussions.

References

- F. T. Wagner and G. A. Somorjai, *J. Am.* Chem. Sot., 102, 5494 (1980).
- W. J. Lo, Y. W. Chung and G. A. Somorjai, *Surf: Sci., 71,* 199 (1978).
- 3 H. Van Damme and W. K. Hall, J. Am. Chem. Soc., 101, *4373 (1979).*
- 4 C. K. Jorgensen, *Acta Chem. Scand., 11, 73* (1957).
- A. H. Boonstra and C. A. H. Mutsaers, J. *Phvs. Chem.. 79.* , 2025 (1975).
- C. Yun, M. Anpo, S. Kodama and Y. Kubokawa,J. *Chem. Sot. Chem Comm., 609 (1980).*
- H. Hartmann, H. L. Schlafer and K. H. Hansen, Z. *anorg.* $\overline{7}$ *Chem., 284, 153 (1956); idem, 289, 40 (1957).*
- G. C. Allen, M. B. Wood and J. M. Dyke, *J. Inorg. Nucl.* 8 *Chem., 35,* 2311 (1973).