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Till recently the highest known bond order was 4. 
This value is attained in compounds having the 
metal-metal bond with configuration d4-d4, such 
as Re2C!ls2-, Tc~(CH~COO)~C~~ etc. In a recent 
paper [l] some evidence has been presented for 6- 
(or 5-) order bonds in the Mo2 dimer in a matrix. In 
this paper experimental data show the possibility 
of 4.5-order bonds in technetium compounds, such 
as Tc~(RCOO)~C~ and [Tc2(RC00)4C12]-. 

In binuclear compounds having the metal-metal 
bonds with d4-d4 configuration the quadrupole bond 
M-M is formed due to u-, ?I- and &-bonds. In [Tc2- 
(RCOO)4Cl3]- the additional (as compared to 
Tc~(RCOO)~C~~) electron can occupy an orbital 
which is either bonding or antibonding for the Tc-Tc 
bond. Taking into account the discussion given in [2] 
for Tc2Cls3-, the two most probable cases to be 
considered are the following: 

(I) The electron occupies the 6*-orbital of b*r= 
symmetry, which is an antibonding one for the Tc-Tc 
bond. In this case the transition from Tc2(RC00)4- 
Cl2 to [Tc~(RCOO)~C~~]- should be accompanied 
by an increase in Tc-Tc distance due to the Tc-Tc 
bond order being reduced to 3.5. 

(2) The electron occupies an orbital of a*,, sym- 
metry. The wave function of such an orbital can be 
written in the form: 

cp = (Y(sr + ~2) + P(dz2(l) + d,%,) + 7% + e8(eq) + 

+ V(Pz(l) - Pzcz,) 

where si, pi and 4 are the wave functions of the two 
Tc atoms, ua are the u-function of 2p,-axial Cl 

atoms, u(eq) are the u-functions of 2p,-equatorial 0 
atoms. The phases of ligand functions and the signs of 
coefficients (Y, /I, 7, E and TJ are chosen in such a way 
that cp describes the bonding between Tc atoms and 
the weakening of Tc-Cl, and Tc-O,, bonds. 

There is a total of five alg levels formed on the 

basis of (sr + s2), (PW, - P&, (&z(l) + &w), 
~1 and u. functions. Three of these levels are 
occupied and describe the u-bonds Tc-Tc, Tc-0 and 
Tc-Cl. There are also two antibonding levels a*rs, the 
corresponding wave functions having the different 
values of cr, /I, 7, E and 7). From general considerations 
one should expect the level having 17l> lel to lie 
lower than the level having le] > 171. Thus, the anti- 
bonding level of the Tc-Cl, bond is lower than the 
antibonding level of the Tc-0, bond. By the same 
token the a*&ype antibonding levels weakening the 
Tc-Tc bond, due to the presence of (sr - s2) and 

(Q(r) - Q(2)) terms, should be expected to lie 
higher than the a* rg level*. 

Table I shows the results obtained by the X-ray 
structure analysis for some Tc and Re compounds. 
If an additional electron occupies the a*rs level, then 
one should expect to observe a decrease in the Tc-Tc 
distance and an increase in the Tc-Cl, and (to a 
lesser extent) Tc-0, distances in compound 4 as 
compared to 1. The changes in bond lengths on pas- 
sing from the compound Tc3[(CH3)3CCOO]4Cl2 to 
[Tc~(CH~COO)~C~~]- must be mainly due to the 
presence of an additional electron in the last com- 
pound. A change in acid must produce an insignif- 
icant effect (see the data for compounds 6 and 7 
in Table I). 

A comparison of data for the technetium com- 
pounds 2 and 4 shows unambiguous evidence for the 
a*rg level to be occuped - not the b*i, level. A 
decrease in Tc-Tc distance in the compound 4 as 

*This is confnmed by the subsequent analysis, where de- 
creased TcTc bond lengths are observed in the compound 4 
(Table I) as compared to 2. It is thus not necessary to con- 
sider the cases where the highest occupied orbital is repre- 
sented by the antibonding n*-orbitaIs for Tc-Tc bond. 

TABLE I. Interatomic Distances (A). 

No. Compound 

1 lTc2aSl 3- 
2 Tc3[(CH313CCOOl4~2 
3 Tc~(CH~COO)~CI 
4 [Tcz(‘=3C0014&1- 
5 [Rez%l 2- 
6 Re3[(CH313CCOOl4C12 
7 Re2(CHsC00)4C12 

M-M M-L,, M-Lax Ref. 

2.144(17) 2.36-2.39 - 394 
2.192(2) 2.032(4) 2.408(4) 5 
2.117(l) 2.059- -2.077 2.656(l) 8 
2.1260(5) 2.069- -2.089 2.539(l) 9 
2.22-2.24 2.31-2.32 - 6 
2.236(l) 2.025(4) 2.477(3) 5 
2.2240(5) 2.041- -2.030 2.521(3) 7 
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compared to 2 is due to the following set of condi- 
tions: 

(a) the presence of bonding interactions (sr + ss) 

and (dZz(l) + d&; 
(b) the weaker Puns-influence of axial Cl ligands 

on Tc-Tc bond due to increased Tc-Cl distance. 
It should be stressed that the last change in trans- 
influence alone is insufficient to explain the observed 
increase in Tc-Tc distance by 0.065 A. Indeed, in 
the similar MO and Re compounds the changes in 
metal-metal bond lengths (as dependent on the 
presence or the character of axial ligand) usually do 
not exceed 0.03 A [5]. 

At the present time the values of coefficients cr, 
/I, 7, E and q are not known, since no quantum- 
chemical calculations have been carried out for the 
compound 4. In principle, it is quite possible that 
a and /3 are small. In such a case the a*rs level is on 
the whole an antibonding one for the Tc-Tc bond, 
and the bond order is 4. A small /3 value is highly 
probable because one can expect the dZ2 orbitals 
to contribute significantly to both the bonding alg 
and the antibonding a*% levels of u-bond M-M. On 
the other hand, an appreciable (Y value is quite pos- 
sible. Moreover, since the technetium s- and p- 
functions must have the total population of 2 (for 
the sum along all the alg states), while the contribu- 
tion of s- and p-states to occupied orbitals is small 
(as indicated by the available calculations for transi- 
tion-metal complexes), a large (Y value must be 
reached in one a*is orbital and a large q value in 
another a*rs orbital. The lower orbital is very likely 
to have IoI > 1~1, because in the free Tc atom s-states 
are occupied and p-states are vacant. In this case the 
formal electron configuration of Tc-Tc bond in the 
compound 4 corresponds to d4s1’2- d4s1j2 and the 
bond order is 4.5. It should be noted that all the 
obtained results are readily applicable to compound 
3 which, like compound 4, has a bond order equal 
to either 4 or 4.5. 

Finally, it should be pointed out that in Tc2Cls3- 
both the quantum-chemical calculations and the mag- 
netic measurements [2] show the evidence for the 
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Tc-Tc bond order to be 3.5, i.e. the highest occupied 
level has the symmetry of b*r,. This, in principle, 
does not contradict our results for the compounds 
3 and 4 because in these last cases the low-lying 
a*rs level is added which corresponds to weakening 
of the Tc-Tc bond. Although the available evidence 
[2] for the bond order value of 3.5 in Tc2Cls3- is 
quite convincing, we consider it to be useful for 
purposes of discussion to quote some arguments in 
favour of still higher bond order in this compound. 
The Tc-Tc distance in Tc2C1s3- is close to those 
values in compounds 3 and 4. Moreover, the differ- 
ences of M-M and M-Cl distances in compounds 1 
and 5 for M = Tc and = Re are -0.09 and 0.06 A re- 
spectively, that is in the compound 1 the presence of 
an additional (as compared to the compound 5) 
electron can be expected to lead to either a decrease 
in M-M bond length, or an increase in M-Cl bond 
length, or both. These changes agree with the sug- 
gestion for the additional electron to occupy the 
a*&ype level conducive to some strengthening of 
the Tc-Tc bond and weakening of the Tc-Cl bond. 
In this case the Tc-Tc bond order in Tc2Cls3- isnot 
less than 4. 
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