Facile Synthesis of Digermyl and Methyl Germyl Ether

CHARLES A. HEIL and ARLAN D. NORMAN

Department of Chemistry, University of Colorado, Boulder, Colo. 80309, U.S.A.

Received October 26, 1981

The preparation of germyl ethers, *i.e.* ethers containing the GeH₃ moiety, has so far been accomplished in only two cases; (GeH₃)₂O is obtained from $(GeH_3)_3N-H_2O$ [1] and $(GeH_3)_2S-HgO$ [2] reactions and GeH₃OCH₃ is formed in Hg-sensitized CH₃OH---GeH₄ photolyses [3] and GeH₃Cl-NaOCH₃ reactions [4]. Product yields, especially of (GeH₃)₂O, have been low. Direct reactions of germyl halides with water or alcohols is known to result only in formation of the hydrogen halide and intractable producs [5]. Since GeH₃-containing ethers are highly reactive, they may offer viable routes to $(GeH_2)_x$ [6, 7], germanium subhydrides of potential interest in inorganic synthesis, and to amorphous germanium hydrides $(GeH_{\leq 2})_{x}$ [7]. This potential has led us to study novel syntheses of GeH₃-containing compounds. We now wish to report a new highly efficient method for the preparation of compounds of type GeH_3OR (where $R = GeH_3$) or CH₃) which makes use of the reagent (CH₃)₃N- GeH_3Br [8] as a germylating agent.

Typically to GeH₃Br (0.45 mmol) dissolved in 10-15 mmol (CH₃)₂O, (CH₃)₃N (0.40 mmol) was added at -196 °C. Reactants were warmed to -78 °C for 20 min to form (CH₃)₃N·GeH₃Br·(CH₃)₂O and excess GeH₃Br were removed in vacuo, H₂O (or D_2O ; 0.18 mmol) or CH₃OH (0.24 mmol) were condensed into the reactor, and reaction materials were warmed to -63 °C for 4-5 hr. Removal of volatile reaction materials in vacuo, and separation of them by low temperature high-vacuum distillation, yielded (GeH₃)₂O [2] and GeH₃OCH₃ [4] in 90-97% and 55-62% yields, respectively. The (CH₃)₃N·GeH₃Br-D₂O reaction yielded (CH₃)₃-NDBr (N-D present, N-H absent in infrared spectrum [9]) and pure (GeH₃)₂O. Traces of GeH₄, Ge_2H_6 , and Ge_3H_8 , and $(GeH_3)_2O$ were observed as products of some (CH₃)₃N·GeH₃Br-CH₃OH reactions.

The $CH_3)_3N$ ·GeH₃Br adduct reactions with H_2O (or D_2O) or CH_3OH proceed smoothly in $(CH_3)_2O$ solvent to form $(GeH_3)_2O$ or GeH_3OCH_3 as shown in eqns. 1 and 2. $2(CH_3)_3N \cdot GeH_3Br + H_2O \rightarrow$ $2(CH_3)_3NHBr + (GeH_3)_2O \qquad (1)$

$$(CH_3)_3N \cdot GeH_3Br + CH_3OH \rightarrow$$

$$(CH_3)_3 NHBr + GeH_3 OCH_3 \qquad (2)$$

The mechanism by which $(CH_3)_3N$ ·GeH₃Br and H₂O or CH₃OH react is of interest, in order to understand how $(CH_3)_3N$ coordination of GeH₃Br moderates reaction of the latter with H₂O or alcohols. We have determined [8] that $(CH_3)_3N$ ·GeH₃Br at -78 °C to -63 °C is most likely an amine adduct of GeH₃Br, a species containing a five-coordinate germanium atom, I.

Because GeH_3Br is coordinated to $(CH_3)_3N$, and dissolution of the adduct appears slight, (eqn. 3a), reaction may be moderated simply because the GeH_3Br concentration is kept low during the subsequent reaction steps (eqns. 3b and 3c).

 $(CH_3)_3N \cdot GeH_3Br \rightleftharpoons (CH_3)_3N + GeH_3Br$ (3a)

 $GeH_3Br + ROH \rightarrow GeOR + HBr$ (3b)

$$(CH_3)_3N + HB_T \rightarrow (CH_3)_3NHBr$$
 (3c)

Alternatively, $(CH_3)_3N$ -coordination to GeH_3Br may appreciably lower the Lewis acidity of the latter, greatly lowering its electrophilicity and tendency towards formation of a key reaction intermediate such as II. Involvement of intermediate species containing GeH_2 moieties, ionized species such as $(CH_3)_3NGeH_2Br$ or $(CH_3)_3N(ROH)GeH_2Br$, or coordinated germylene species like $(CH_3)_3NGeH_2$, seems unlikely since in reactions of $(CH_3)_3N\cdot GeH_3Br$ with D_2O no evidence for incorporation of deuterium into the $(GeH_3)_2O$ product is obtained.

The use of base-coordinated germyl halides in a variety of processes to achieve syntheses that are otherwise difficult or unachievable offers considerable potential for further study. This potential is being pursued by us currently.

Acknowledgements

Support of this work by National Science Foundation Grants CHE-7604290 and CHE-7909497 is gratefully acknowledged.

0020-1693/82/0000-0000/\$02.75

 $\langle \alpha \rangle$

References

- 1 D. W. H. Rankin, Chem. Comm., 194 (1969).
- 2 T. D. Goldfarb and S. Sujishi, J. Am. Chem. Soc., 86, 1679 (1964).
- 3 G. A. Gibbon, Y. Rousseau, C. H. van Dyke and G. J.
- Mains, Inorg. Chem., 5, 114 (1966).
 4 G. A. Gibbon, J. T. Wang and C. H. van Dyke, Inorg. Chem., 6, 1989 (1967).
- 5 A. D. Norman and C. A. Heil, unpublished results; F. Glockling, 'The Chemistry of Germanium', Academic
- Press, New York, N.Y., 1969 and references therein. 6 S. N. Glarum and C. A. Kraus, J. Am. Chem. Soc., 72, 5398 (1950);
- H. Satge, M. Massol and P. Riviere, J. Organometal. Chem., 56, 1 (1973).
- 7 D. S. Rustad and W. L. Jolly, Inorg. Chem., 7, 213 (1968); R. M. Dreyfuss and W. L. Jolly, Inorg. Chem., 10, 2567 (1971).
- 8 C. A. Heil and A. D. Norman, submitted for publication.
- 9 K. Nakamoto, 'Infrared Spectra of Inorganic Compounds', Wiley, New York, 1963.