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As recent as four years ago, bridging organophos- 
phorus groups (e.g., R?P-) in coordination com- 
pounds were relatively rare; however, now that pauci- 
ty is rapidly disappearing through the rational syn- 
theses of bimetallic and cluster compounds that con- 
tain bridging p2-PRz, c(~-PR, and I.(~-PR groups [l] . 
To our knowledge, all of these bridging organophos- 
phido groups function as independent units, i.e., 
they are not a part of a chelate ring to another ligand 
atom. Thus, we report herein the first examples of 
bimetallic complexes that contain bridging phosphido 
groups resulting from one of the novel chelating 
phosphine-phosphido ligands Ph2PCHzCHzCH2PPh- 
or Cy2PCH2CH2CH2PPh- (Ph = C6Hs and Cy= 
cycle-C6HII). 

Treatment of either of the tertiary-secondary 
biphosphines Ph2PCH2CH2CH,P(H)Ph(PPH) [2] or 
Cy2PCH2CH2CH2P(H)Ph(CyPPH) with either Pd(II) 
or Pt(I1) halides, in the presence of a base [3], leads 
to bimetallic complexes of the types M2X,(PP),+ or 
M2X,(CyPP), (X = halide, PP and CyPP are the 
anionic forms of PPH and CyPPH, respectively). In 
the case of more robust Pt-L bonds (e.g., Pt-CH,), 
treatment of cis-Pt(CH&(COD)t with either of the 
ligands PPH or CyPPH in benzene or toluene at 25 “C 
readily yields the monomeric, planar complexes 
Pt(CH&(ligand) in SO-90% yields. However, if the 
solutions are refluxed for 1 hour, methane is evolved 
and the bimetallic phosphido-bridged complexes 
F&(CH&(PP), and Pt2(CH&(CyPP)2 result. Owing 
to the presence of two different types of phosphorus 

*Authors to whom aII correspondence should be addressed. 
+The designation PP is used-here to &note the anion that 

results from loss of a P-H proton from Ph2PCH,C!H2CH,P- 
(H)Ph(PPH). 

atoms (phosphine and phosphido) and the 33.8% 
natural abundance of 19’Pt (I = l/2), these Pt,X,- 
(phosphine-phosphido)z complexes produce a com- 
plicated 31P{1H} NMR spectrum (e.g., Fig. 1). The 
central portion of the spectrum consists of two ten- 
line multiplets, consistent with an AA’XX’ spin sys- 
tem, which would represent the four phosphorus 
nuclei of a dimeric structure. The satellites result 
from 31P-195Pt coupling. 

To confirm the nature of the bridging phosphido 
groups and the bimetallic structure of the complex 
Pt2(CH3)z(Ph2PCH2CH2CH?P(Ph))2 in the solid 
state, an X-ray structure determination was under- 
taken. Preliminary examination of the crystal and 
data collection were performed on a Syntex P21 
diffractometer. Space group: P2Jn; a = 15.285(5), 
b = 16.874(3), c = l&419(7) A, /3 = 110.98(2)“; V = 
4435.7 A3; D = 1.63 g/cm3; and Z = 4. The structure 
was solved by the heavy atom method using a Patter- 
son map and difference Fouriers. The final cycle of 
full-matrix, least-squares refinement gave the con- 
ventional agreement factor R = 0.066, using 4648 
reflections with I > 30.1. 

The crystal structure cocsists of the packing of 
discrete bimetallic molecules of formula PtZ(CH& 
[(C,Hs),P(CH,),P(C,Hs)] 2. The closest intermolecu- 
lar contacts, ranging from 3.50 to 3.67 8, are be- 
tween the phenyl rings of different bimetallic mole- 
cules. Each molecule consists of two platinum atoms 
bridged only by the phosphido moiety of two iden- 
tical anionic ligands, l-diphenylphosphino-3-phenyl- 
phosphido-propane (PP). In addition to the two 
phosphido bridges, each platinum atom achieves a 
four-coordinate, approximately planar geometry by 
bonding to a methyl group and a diphenylphosphino 
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Fig. 1. 31P{1H} NMR spectrum of Pt,(CH3)2(PP)2 in ben- 
zene at room temperature. The principal multiplets are 
centered at - 155.1 and 2.28 ppm, relative to external 85% 
H3P04. The positive chemical shifts are downfield from the 
standard. The P-P coupling constants are +8.9, -23.7, 
+134.4, and +337.8 Hz. 
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group, thereby creating a chelate ring with the corre- 
sponding phenylalkylphosphido bridge. 

A drawing which gives the important bond dis- 
tances of the inner coordination sphere of each 
platinum is shown in Fig. 2. The dihedral angle 
between the approximately square-planar coordina- 
tion spheres of the platinum atoms of 37 “C gives a 
folded configuration to the bimetallic molecule in 
which the methyls and the diphenylphosphino groups 
are in a tram arrangement. A perspective view show- 
ing the nonplanarity of the bridging phosphido 
linkage is given in Fig. 3. This view also shows the 
bulky phenyl groups attached to each bridging phos- 
phide bending away from each other due to steric 
repulsions. The closest intramolecular contact be- 
tween these two phenyl rings is 3.37 8, between C(9) 
and C(28). In addition, the methyl groups tend to 
bend away from all of the bulky phenyl rings in a 

Fig. 2. A drawing of the inner coordination sphere of each 
platinum for Ptz(CH&(PP)2, giving the important bond 
distances. Angles within the coordination sphere are: Pt(l)- 
P(l)-Pt(2) = 98.9(2), Pt(l)-P(3)-Pt(2) = 98.6(2), P(l)- 
Pt(l)-P(2) = 95.9(l), P(l)-Pt(2)-C(8) = 95.9(7), P(l)- 
Pt(l)-P(3) = 74.9(2), P(l)-Pt(2)-P(3) = 74.5(2), P(l)- 
Pt(l)-C(4) = 170.4(6), P(l)-Pt(2)-P(4) = 170.1(2), P(3)- 
Pt(l)-C(4) = 96.0(6), P(3)-Pt(2)-P(4) = 96.1(2), P(3)- 
Pt(l)-P(2) = 169.8(2), P(3)-Pt(2)-C(8) = 169.9(7). 

Inorganica Chimica Acta Letters 

bend away from all of the bulky phenyl rings in a 
direction toward unfilled space in the coordination 
sphere. 

The Pt(1) to Pt(2) distance of 3.521(l) A indicates 
no significant metal-to-metal bonding. The four Pt-P 
distances to the bridging phosphido groups are longer 
(mean = 2.320(3) A) than the two Pt-P distances to 
the terminal phosphino groups (mean = 2.272(S) A). 
Bridging ligand-metal distances are usually longer 
than terminal ligand-metal distances, and this effect 
is presumably more important in this complex than 
the effect that might result from the differences, 
mainly the attachment of one phenyl group, between 
a phosphido and a phosphino ligand. Also, the four 
Pt-P distances of the bridging phosphido groups are 
slightly asymmetric; the two Pt-P bonds tram to 
CHs are slightly shorter (mean = 2.312(6) A) than 
those tram to phosphorus (mean = 2.327(6) A). 
Nevertheless, all of the Pt-P distances fall within the 
range of known Pt-P bonding distances (ca. 2.24 to 
2.33 A) [5-71. 

The Pt-C distances of 2.082(22) and 2.141(24) 
A are not significantly different and compare well 
with the sum of the atomic radii, Pt-C(sp3) 2.09 A 
[8], and with the Pt-C distances of 2.05(2) and 
2.12(2) i$ in Pt(CH2CH2CH,CH2)(PPh3)2 [9]. In 
addition, the Pt-C distance trans to a halide ion in 
several platinum(H) phosphine complexes (e.g., 
2.086(7) A in trans-PtBr($-C3H,)(PEt3)2 [lo] , 
2.090(4) A in trans-PtC1($-C3HS)(PPh3)2 [ 1 l] , 
2.079(14) a in trans-Pt(CH,SiMe3)C1(PMe2Ph>2 
[ 121, 2.07 l(1) A in trans-PtC1(Me)(PMePhz)z [ 131, 
2.120(7) a in trans-Pt(I*S02)Me(PPh3)2 [14], and 
2.08(l) A in trans-PtC1(CHzCN)(PPh3)2 [15] are 
similar to the values found in this investigation. 

C(37) 

Cl361 

Fig. 3. An ORTEP drawing that illustrates the folded nature of the bridging phosphido linkages. 
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