MIND0/3 Study of Some Tetra-atomic Clusters

ALASTAIR F. CUTHBERTSON and CHRISTOPHER GLIDEWELL* *Chemistry Department, University of St. Andrews, St. Andrews. Fife KY1 6 9ST. U.K.* Received September 4,198O

MIND013 calculations have been made of the energies of tetra-atomic clusters M_4^{tn} ($M = Si, P, S$; $|n| = 0$, 2, 4) for a wide range of point groups, as well *as for unconstrained geometries, in both singlet and triplet electronic configurations. The results are discussed in terms of the Jahn-Teller effect, in the first and second orders.*

Introduction

The Williams-Wade approach to molecular polyhedra $[1-4]$ has successfully rationalised the structures of a wide range of cluster molecules containing between five and twelve cluster atoms, but the known tetra-atomic clusters do not fit into the *close, nido, arachno* [l , 21, *hypho [4, 5, 61* pattern of the Williams-Wade description. Symmetry arguments however have suggested that for a tetra-atomic cluster, a tetrahedral structure *(i.e. close)* is favoured in the presence of sixteen or twenty valence electrons, whereas a square planar *(arachno* structure) is favoured in the presence of eighteen or twentytwo valence electrons [7] : no other geometries were considered explicitly but consideration of the secondorder Jahn-Teller effect enabled predictions to be made of the possible distortions from tetrahedral or square planar geometries. In this paper we report MIND0/3 calculations of the structures and energies of the tetra-atomic clusters M_4^{th} , where $M = Si$, P, or S and $|n|=0$, 2 or 4.

Method

Calculations were made using the IBM version of MIND0/3 [8]. The most extensive study was made of $Si₄^{tn}$ species, with only a more restricted investigation of $P_4^{\dagger n}$ and $S_4^{\dagger n}$. For the silicon tetramers, the lowest singlets and triplets were investigated for $n = 0, -2$ and -4 : for each value of n and each spin configuration, the molecular energy was calculated for D_{2h} , D_{4h} and T_d geometries, with optimisation of inter atomic distances in each case: free optimisations (without constraints) of the molecular geometry were then undertaken, for both singlet and triplet starting both from D_{4h} and T_d . The molecular states, enthalpies of formation and molecular geometries, expressed as a set of six interatomic distances, for silicon tetramers are given in Table I.

For the sulphur tetramers, species having $n = 0$ and +2 were investigated: singlet and triplet energies and structures were calculated in the restricted point groups D_{4h} and T_d together with free optimisations. Additionally, free optimisations were made of the structures and energies of S_8 and S_8^{+2} . Results for tetrameric sulphur species are in Table II. Only singlet species were investigated for P_4 species having $n =$ 0, \pm 2: in addition free optimisations (from T_d) were made for P_4 and P_4 . Computed results for tetrameric phosphorus species are recorded in Table III.

Electronic configurations of T_d and D_{4h} species are listed in Table V.

Results and Discussion

Tetrahedral versus *Square Planar Geometries*

The original symmetry-based discussion [7] of the structures of the homoatomic tetramers was in terms almost exclusively of the choice between tetrahedral and square planar configurations. The results recorded in Table I indicate that for the neutral sixteen electron species $Si₄$ the square planar geometry is of lower energy than the tetrahedral for both singlet and triplet spin configurations, by some 130 kJ mol⁻¹ for the singlet and some 200 kJ mol⁻¹ for the triplet: for the dinegative eighteen electron ion Si_4^{-2} , the energy differences between T_d and D_{4h} structures are very small in both spin configurations, and the tetrahedral geometry is marginally favoured or singlet Si_4^{-2} , while square planar geometry is avoured, even more marginally for triplet Si_4^{-2} . For the tetranegative twenty electrion ion Si_{4}^{-4} , the tetrahedral structure had the lower energy for the singlet configuration, but for the triplet, the square planar structure had the lower energy. So far as

^{*}Author to whom correspondence should be addressed.

^aFree optimisation from D_{4h} . ^bFree optimisation from T_d .

square planar/tetrahedral equilibria are concerned, the reduction $\text{Si}_4 \rightarrow \text{Si}_4^{-2} \rightarrow \text{Si}_4^{-4}$ causes a progressive destabilisation of the D4h structure with respect to the tetrahedral. With exception of triplet Si4 and singlet $Si₄⁻²$, relaxation of the square planar geometry to rectangular planar effects a modest decrease in energy. In each instance the T_d species have M-M distances which are longer than the short distances in the D_{4h} and D_{2h} species, but shorter than the weighted mean interatomic distances in the planar species.

Of the sulphur species (Table II), for the neutral S4 molecule having twenty four valence electrons D4h is the lower energy configuration for the singlet, whereas T_d is somewhat the more stable for the triplet. In the twenty two electron ion S_4^{2+} , D_{4h} is again the stable configuration for the singlet, with the triplet more stable in T_d . The inter-atomic distances for D_{4h} and T_d species follow the same pattern as those in Si_4^{th} species: in both Si_4^{th} and S_4^{th} , reduction increases the interatomic distances, as expected. Of the P_4^{tn} fragments having $n = 0, \pm 2$ (Table III), T_d is the more stable geometry for the twenty electron neutral P_4 (isoelectronic with Si_4^{-4}) and the whiteen electron ion P_{4}^{+2} (isoelectronic with Si^{-2}_{4}) ile D_{4h} is the more favoured configuration for the twenty two electron ion P_4^{-2} (isoelectronic with S_4^{+2}).

TABLE II. Computed Properties of S_4^{*n} .

Free optimisation of singlet S₄ species starting from D_{4h} or T_d yields this minimum. ^DFree optimisation of triplet S₄ species tarting from D_{4h} or T_d yields this minimum. ^cFree optimisation from this geometry effects no change. σ Free optimisation from T_d . ^eFree optimisation from D_{4h} .

TABLE III. Computed Properties of P_4^{th} .

^aFree optimisation effects no change. ^bFree optimisation from T_d. ^cFree optimisation yields D_{4h} species exactly.

TABLE IV. Square Planar/Tetrahedral Energy Minima.

In summary (Table IV), for singlet species, the more stable configuration is D4h for sixteen, twenty two, or twenty four valence electrons but T_d for eighteen or twenty electrons, while for the lowest triplet states, the stable configuration is D_{4h} (for

sixteen, eighteen or twenty electrons, and T_d for twenty two or twenty four: in each case the result is independent of the element concerned. The species whose structures are known experimentally in the solid state (rather than as isolated gaseous fragments,

TABLE V. Electronic Configurations of D_{4h} and T_d Species.

(a)	Si ₄	
	$D_{4h}({}^{1}A_{1g})$: D_{4h} $(^{3}A_{2g})$:	$(1a_{1g})^{2}(1e_{u})^{4}(1b_{1g})^{2}(1a_{2u})(1b_{2g})^{2}(2a_{1g})^{2}(1e_{g})^{2}+(2e_{u})^{0}(1b_{2u})^{0}(3e_{u})^{0}(2b_{1g})^{0}(1a_{2g})^{0}$
	T_d (¹ A ₁): T_d (³ A ₂):	$(1a_1)^2(1t_2)^6(2a_1)^2(2t_2)^6$ \mathbb{I} $(1e)^0(1t_1)^0(3t_2)^0$ $(1a_1)^2(1t_2)^6(2t_2)^6(1e)_2^2$ # $(2a_1)^0(1t_1)^0(3t_2)^0$
	(B) Si_4^{-2}	
	$D_{4h}({}^{1}A_{1g})$: $D_{4h}({}^3E_u)$: T_d (¹ A ₁):) T_d (3A_2): \int	$(1a_{1g})^{2} (1e_{u})^{4} (1b_{1g})^{2} (1a_{2u})^{2} (1b_{2g})^{2} (2a_{1g})^{2} (1e_{g})^{4} (12e_{u})^{0} (1b_{2u})^{0} (3e_{u})^{0} (2b_{1g})^{0} (1a_{2g})^{0}$ $(1a_{1g})^{2} (1e_{u})^{4} (1b_{1g})^{2} (1a_{2u})^{2} (1b_{2g})^{2} (2a_{1g})^{2} (1e_{g})^{3} (1b_{2u})^{1} (1e_{u})^{0} (3e_{u})^{0} (2b_{1g})^{0} (1a_{2g})^{0}$ $(1a_1)^2(1t_2)^6(2a_1)^2(2t_2)^6(1e)^2\mathbb{I}(1t_1)^0(3t_2)^0$
(c)	$\overline{\text{Si}_4}^4$	
	$D_{4h}({}^{1}A_{1g})$: $D_{4h}({}^3A_{2g})$: T_d (¹ A ₁): T_d (³ T_1):	$(1a_{1g})^{2} (1e_{u})^{4} (1b_{1g})^{2} (1a_{2u})^{2} (1b_{2g})^{2} (2a_{1g})^{2} (1b_{2u})^{2} (1e_{g})^{4} \parallel (2e_{u})^{0} (3e_{u})^{0} (2b_{1g})^{0} (1a_{2g})^{0}$ $(1a_{1g})^{2} (1e_{u})^{4} (1b_{1g})^{2} (1a_{2u})^{2} (1b_{2g})^{2} (2a_{1g})^{2} (1e_{g})^{4} (2e_{u})^{2} (1b_{2u})^{0} (3e_{u})^{0} (2b_{1g})^{0} (1a_{2g})^{0}$ $(1a_1)^2(1t_2)^6(2a_1)^2(2t_2)^6(1e)^4+(1t_1)^0(3t_2)^0$ $(1a_1)^2(1t_2)^6(2a_1)^2(2t_2)^6(1t_1)^4$ $(1e)^0(3t_2)^0$
(d)	\mathbf{S}_4	
	$D_{4h}({}^{1}A_{1g})$: D_{4h} $(^{3}A_{2g})$:	$(1a_{1g})^{2}(1e_{u})^{4}(1b_{1g})^{2}(1a_{2u})^{2}(1b_{2g})^{2}(2a_{1g})^{2}(1e_{g})^{4}(2e_{u})^{4}(1b_{2u})^{2}\ (3e_{u})^{0}(2b_{1g})^{0}(1a_{2g})^{0}$ $(1a_{1g})^{2}(1e_{u})^{4}(1b_{1g})^{2}(1a_{2u})^{2}(1b_{2g})^{2}(2a_{1g})^{2}(1e_{g})^{4}(2e_{u})^{4}(3e_{u})^{2}\mathbb{I}(1b_{2u})^{0}(2b_{1g})^{0}(1a_{2g})^{0}$
	T_d $(^1A_1)$: T_d (³ T_1):	$(1a_1)^2(1t_2)^6(2a_1)^2(2t_2)^6(1e)^4(1t_1)^4 (3t_2)^0$
(e)	S_4^{+2}	
	$D_{4h}({}^{1}A_{1g})$: D_{4h} (³ E _g):	$(1a_{1g})^{2}(1e_{u})^{4}(1b_{1g})^{2}(1a_{2u})^{2}(1b_{2g})^{2}(2a_{1g})^{2}(1e_{g})^{4}(2e_{u})^{4}+(1b_{2u})^{0}(3e_{u})^{0}(2b_{1g})^{0}(1a_{2g})^{0}$ $(1a_{1g})^{2}(1e_{u})^{4}(1b_{1g})^{2}(1a_{2u})^{2}(1b_{2g})^{2}(2a_{1g})^{2}(1e_{g})^{4}(2e_{u})^{3}(1b_{2u})^{1}\mathbb{I}(3e_{u})^{0}(2b_{1g})^{0}(1a_{2g})^{0}$
	T_d $(^1T_1)$: T_{d} (³ T_{1}):	$(1a_1)^2(1t_2)^6(1a_1)^2(2t_2)^6(1e)^4(1t_1)^2$ $(3t_2)^0$
(f)	P_4	
	$D_{4h}({}^{1}A_{1g})$: T_d (¹ A ₁):	$(1a_{1g})^2(1e_{u})^4(1b_{1g})^2(1a_{2u})^2(1b_{2g})^2(2a_{1g})^2(2e_{u})^4(1e_{g})^2+(1b_{2u})^0(3e_{u})^0(2b_{1g})^0(1a_{2g})^0$ $(1a_1)^2(1t_2)^6(2t_2)^6(2a_1)^2(1e)^4$ $(1t_1)^0(3t_2)^0$
	(g) P_4^{+2}	
	D_{4h} $(^{1}A_{1g})$: T_d (¹ A ₁):	$(1a_{1g})^{2}(1e_{u})^{4}(1b_{1g})^{2}(1a_{2u})^{2}(1b_{2g})^{2}(2a_{1g})^{2}(2e_{u})^{4}\ (1e_{g})^{0}(1b_{2u})^{0}(3e_{u})^{0}(2b_{1g})^{0}(1a_{2g})^{0}$ $(1a_1)^2(1t_2)^6(2a_1)^2(2t_2)^6(1e)^2+(1t_1)^0(3t_2)^0$
	(h) P_4^{-2}	
	$D_{4h}({}^{1}A_{1g})$: T_d (¹ A ₁):	$(1a_{1g})^{2} (1e_{u})^{4} (1b_{1g})^{2} (1a_{2u})^{2} (1b_{2g})^{2} (2a_{1g})^{2} (2e_{u})^{4} (2e_{g})^{4} (1b_{2u})^{0} (3e_{u})^{0} (2b_{1g})^{0} (1a_{2g})^{0}$ $(1a_1)^2 (1t_2)^6 (2t_2)^6 (2a_1)^2 (1e)^4 (1t_1)^2$ $(3t_2)^0$
(i)	P_4	
	T_d (² E):	$(1a_1)^2(1t_2)^6(2t_2)^6(2a_1)^2(1e)^3$ $(1t_1)^0(3t_2)^0$
(j)	P_4	
	T_d (² T ₁):	$(1a_1)^2(1t_2)^2(2t_2)^6(2a_1)^2(1e)^4(1t_1)^1(3t_2)^0$

to which the present calculations refer) are the sin- *Elecnonic Configurations*

lets Si_4^{\bullet} [9, 10], S_4^{\bullet} [11], and P₄ [12]: of these, The electronic configurations of square planar and tetrahedral species listed in Table V show a number of common features. The lowest levels of the T_d

$\Gamma_i \times \Gamma_i$
E X E
$T_1 \times T_1$
$T_2 \times T_2$

 \mathbf{E}

species are always $(1a_1)^2(1t_2)^6$ and those of the D_{4h} species are always $(1a_{1g})^2(1e_u)^4(1b_{1g})^2$: these levels correspond mainly to s-orbital combinations, and justify the original choice [7] of a p-orbital basis set upon which to base the discussion of these structures. The next six levels in the singlet D_{4h} species are $(la_{2u})(lb_{2g})(2a_{1g})(le_g)(2e_u)(lb_{2u})$, although the order of the last three varies slightly from species to species: the first five are, with an alternative choice of axes interchanging the designation b_{2g} and b_{1g} , identical with those derived [7] solely on grounds of symmetry. The remaining levels in singlet T_d species are usually $(2a_1)(2t_2)(1e)(1t_1)(3t_2)$; in Si₄ $({}^3A_2)$ the 2a₁ level is between 1e and 1t₁, and in both P4 $({}^{1}A_1)$ and $P_4^{-2}({}^{1}A_1)$ this level is between $2t_2$ and le: again this ordering is identical with that deduced earlier.

It is interesting to note that for the triplet configurations there is often a subtle change in the ordering of the energy levels from that found in the corresponding singlet. For example in tetrahedral $Si₄$, the singlet configuration has the levels in the order expected intuitively namely $(1a_1)(1t_2)(2a_1)(2t_2)$ $(1e)(1t_1)(3t_2)$, whereas in the triplet the $2a_1$ level is between le and $1t_1$ to give the configuration $(1a_1)^2(1t_2)^6(2t_2)^6(1e)^2/(2a_1)^0(1t_1)^0(3t_2)^0$, ideal for a triplet state. Similar changes in order may be found (Table 5) for Si_4^{-2} (D_{4h}), Si_4^{-4} (D_{4h} and T_d), and $S_4(D_{4h})$.

Of the singlet T_d species listed in Table V, the following may be expected, by virtue of their electronic degeneracy, to be sensitive to first order Jahn-Teller distortions: Si_4^{-2} , S_4 , S_4^{+2} , P_4^{+2} , and P_4^{-2} : the first order disortions will be discussed after the second order Jahn-Teller effect has been dealt with. The only singlet D_{4h} species in Table V, which are sensitive to first order distortions are $Si₄$ and $P₄$.

Second Order Jahn-Teller Effect

The electronic configurations listed in Table V are of importance in assessing the usefullness of the approach used previously [1], *via* the second order Jahn-Teller effect, to the question of whether square planar or tetrahedral geometry would be favoured for a particular species. For an M_4 cluster of T_d

TABLE VI. Direct Products in T_d Yielding Symmetry Class TABLE VII. Direct Products in D_{4h} Yielding Symmetry Classes B_{2u} , B_{2g} and B_{1g} .

	$\Gamma_i \times \Gamma_i$	$\Gamma_{\bf i} \times \Gamma_{\bf i}$
(a) B_{2u}	$A_{1g} \times B_{2u}$	NONE
	$A_{2g} \times B_{1u}$	
	$A_{1u} \times B_{2g}$	
	$A_{2u} \times B_{1g}$	
	$E_g \times E_u$	
(b) B_{2g}	$A_{1g} \times B_{2g}$	$E_g \times E_g$
	$A_{2g} \times B_{1g}$	$E_u \times E_u$
	$A_{1u} \times B_{2u}$	
	$A_{2u} \times B_{1u}$	
(c) B_{1g}	$A_{1g} \times B_{1g}$	$E_g \times E_g$
	$A_{2g} \times B_{2g}$	$E_{\mathbf{u}} \times E_{\mathbf{u}}$
	$A_{1u} \times B_{1u}$	
	$A_{2u} \times B_{2u}$	

TABLE VIII. HOMO and LUMO Symmetry Classes, and Energy Gaps for Species Sensitive to the Second Order Jahn-Teller Effect.

symmetry, the e vibration (v_2) distorts the geometry ultimately to D_{4h} : the two components of ν_2 distort the structure in different ways one via D_{2d} intermediates and the other via D_2 intermediates, but in the limit both components yield D_{4h} . For a D_{4h} cluster M_4 , the b_{2u} vibration (ν_4) distorts the geometry via D_{2d} intermediates giving ultimately a T_d geometry: on the other hand the b_{2g} vibration (ν_3) distorts the geometry to rectangular \bar{D}_{2h} , while b_{1g} (v_2) distorts the geometry to rhomboidal D_{2h} . The direct products $\Gamma_i \times \Gamma_j$ of relevance to the second order Jahn-Teller interconversion of D_{4h} and T_d are given in Tables VI and VII, along with those relevant to in-plane distortions of D_{4h} , together with the direct products $\Gamma_i \times \Gamma_i$ of relevance to the first order Jahn-Teller effect (see below).

The singlet T_d species in this study which are not subject to the first order Jahn-Teller effect are $Si₄$, $Si₄⁻⁴$, and P₄, while those not so subject in D_{4h} are Si_4^{-2} , Si_4^{-4} , S_4 , S_4^{+2} , P_4^{+2} , and P_4^{-2} and to all these species the second order effect is relevant. Table VIII lists the symmetry classes of the HOMO and LUMO of species sensitive to the second order effect, together with the corresponding energy gaps. Of the T_d species, all generate a HOMO/LUMO direct product containing the symmetry class E (Table VI), as required as a necessary but not sufficient condition for distortion along v_2 towards D_{4h} : as well as the direct product, the magnitude of the energy gap is also important. Pearson [13] has suggested that an energy gap less than ca . 4 eV is required for distortion to occur: although the energies of unoccupied orbitals are generally calculated by MIND0/3 to be somewhat too positive it is noteworthy that of the T_d species in Table VIII, Si_d with the smallest HOMO/LUMO gap of 5.61 eV is less stable as a tetrahedral than as a square planar molecule, while Si_4^{-4} and P₄ with energy gaps of 7.23 eV and 9.04 eV are calculated to be more stable in T_d than in D_{4h} , in accord not only with experimental observation but with the predictions of the second order Jahn-Teller effect also.

Of the square planar singlets in Table VIII, both $Si₄⁻²$ and $Si₄⁻⁴$ generate a direct product which contains the symmetry class B_{2u} , and for both these ions the HOMO/LUMO gap is small: neither is stable in D_{4h} (Table IV) and both distort towards T_d . Neither of S_4 and $S_4^{\dagger 2}$ generates the symmetry class B_{2u} from the direct product of the symmetry classes of its HOMO and LUMO and the energy gaps are 6.51 eV and 6.88 eV. For each of these fragments, the only orbital combinations (1 occupied, 1 unoccupied) which gave the appropriate direct product (cf. Tables V and VII) are $a_{2n} \times b_{1g}$ for ach, and in addition $a_{1\sigma} \times b_{2\nu}$ for $S_4^{\dagger 2}$; in each instance the energy gap greatly exceeds the possible value so that no distortion along ν_4 (b_{2u}) is expected. Table IV records that each of these species is more stable in D_{4h} than in T_d .

First Order Jahn-Teller Effect

The conditions for a first order distortion of a T_d fragment towards D_{4h} are given in Table VI; reference to Table V shows that these conditions are fulfilled in all the cases where degeneracy occurs. The conditions for first order distortion of a D_{4h} fragment towards T_d or D_{2h} are given in Table VII: there is no first order effect which can give a distortion along b_{2u} since $g \times g = u \times u \neq u$: however both $Si₄$ and $P₄$ are sensitive to distortion along both $v_2(b_{1g})$ and $v_3(b_{2g})$.

Of the T_d species, Si_4^{-2} and P_4^{+2} are sensitive to distortion along no other coordinate but S_4 , S_4^{+2} , and P_4^2 are also sensitive to distortion along the t₂ vibration v_3 : with the possibility that one, two or three components of v_3 could be activated, the number of possible structures, all of rather low symmetry, which could arise from such distortion is large.

Removal of a single electron from tetrahedral P4 yields P_4^* whose electronic configuration is in Table V: similarly addition of a single electron yields P_4 . These ions are both subject to first order Jahn-Teller distortion, in the case of P_4^* along $v_2(e)$ and in the case of P_4^- along $\nu_2(e)$ or $\nu_3(t_2)$. Free optimisation of the geometry (Table III) shows that they both distort along v_2 , but along different components as P_4^* adopts a structure of D_{2d} symmetry, while $P_4^$ adopts a D_2 structure; both are intermediate along different pathways between T_d and D_{4h} .

Free Optimisations

In addition to a comparison of T_d and D_{4h} structures, a number of free optimisations were undertaken, where the energy was minimised without geometrical constraints: the results of these optimisations are given in Tables I-III. The majority of the freely optimised geometries of are D_2 symmetry: of the D_2 species, ³A of Si₄ is virtually D_{2d} (³A₁) as is ¹A of Si_4^{-2} ; similarly the C_s species ¹A^T of Si_4 is very close to $C_{2v}({}^{1}A_{1}).$

Free optimisations of $Si₄^{tn}$ generally lead to $D_2(D_{2d})$ species for singlet electronic configurations: none of these represents a substantial geometrical change from the structure of Table IV. The C_{2v} (or near C_{2v}) structure observed are not planar, but are of 'butterfly' configuration resulting from the distortion of a tetrahedron along one of its edges *(i.e.* a distortion along any one component of ν_3). The D_2 structures can arise by distortion from T_d along ν_2 , as can D_{2d} , which may also arise by distortion from D_{4h} along $\nu_4(b_{2u})$.

In singlet tetrahedral $Si₄$ the HOMO and LUMO are, respectively, t_2 and e, whose direct product contains $t_1 + t_2$; so that although a second order distortion along $v_2(e)$ is not possible, such a distortion along $v_3(t_2)$ is possible to yield a C_{2v} geometry. In singlet tetrahedral Si_4^{-2} , the ion is subject to a first order distortion along $v_2(e)$, which can give the $D_2(D_{2d})$ geometry found in the free optimisation. Tetrahedral singlet Si_4^{-4} has HOMO and LUMO of symmetry classes e and t_1 respectively whose direct product contains $t_1 + t_2$: second order distortion along $v_2(e)$ towards D_{4h} is not therefore possible, but distortion is possible along $v_3(t_2)$ to give the C_{2v} structure resulting from the free optimisation.

For neutral singlet S_4 , free optimisation yields an exactly D_{4h} structure; a first order distortion of the tetrahedral molecule is expected along a coordinate contained in $[t_1]^2$ *i.e.* along either $v_2(e)$ or $v_3(t_2)$: distortion v_2 can give the square planar geometry calculated in the free optimisation. The distortion of tetrahedral singlet $S_4^{\text{+2}}$ can again be along v_2 or v_3 : v_2 gives the square planar geometry observed experimentally [11] while ν_3 can give rise to the C_{2v} structure calculated without constraints. It should be emphasised in this instance that the energy difference between D_{4h} and C_{2v} is very modest.

In tetrahedral singlet P_4^{+2} , a first order distortion along the ν_2 vibration is to be expected: the freely ptimised geometry is of D_{2d} symmetry in accord vith this: the structures of P_4^r and P_4^- have been discussed above. In P_4^{-2} , the tetrahedral singlet is subject to a first order distortion along a coordinate contained in $[t_1]^2$ *i.e.*, along ν_2 or ν_3 : the freely optimised geometry has D_{4h} symmetry corresponding to distortion along ν_2 .

In the singlet square planar molecule $Si₄$, the system is subject to a first order distortion along a coordinate contained in $[eg]^2$, *i.e.* along b_{1g} or b_{2g} : the geometry calculated by free optimisation starting from D_{4h} has only D_2 symmetry, whereas only planar species could be obtained by b_{1g} or b_{2g} distortions. Si_4^{-2} and Si_4^{-4} are both subject, as D_{4h} singlets, to second order distortion along b_{2u} : both give D_2 geometries on free optimisation from D4h, corresponding closely but not identically to a b_{2u} distortion. In both S₄ and S⁺² the free optimisations from D_{4h} yield no change in structure, consistent with the large HOMO/LUMO gaps (Table VIII). No free optimisations starting from D_{4h} were undertaken for $P_4^{\text{+n}}$ species.

Overall the free optimisations starting from T_a gave results entirely consistent with the predictions of the first and second order Jahr-Teller effects, although those starting from D_{4h} were rather less satisfactory: that for $Si₄$, in particular, is wholly inconsistent.

References

- R. E. Williams, *Inorg. Chem., 10, 210* (1971).
- K. Wade, *Chem. Comm.*, 792 (1971).
- K. Wade, in 'Advances in Inorganic Chemistry and Radiochemistry', (J. J. Emeléus and A. G. Sharpe, eds.), Academic Press, New York, 18, 1 (1976).
- *4* R. E. Williams, in 'Advances in Inorganic Chemistry and Radiochemistry', (H. J. Emeléus and A. G. Sharpe, eds.). Academic Press. New York. 18. 67 (1976).
- *5* A. v. Fratini, G. W: SuIlivan, M. L. Denniston, R. K. Hertz and S. G. Shore, *J. Am. Chem. Soc.*, 96, 3013 (1974).
- *6* N. W. Alcock, H. M. Colquhoun, G. Haran, J. F. Sawyer and M. G. H. Wallbridge, *Chem. Comm.*, 368 (1977).
- *I* C. Glidewell, *Inorg. Nuclear Chem. Letters, 11, 761 (1975).*
- *8* J. F. Chiang and M. L. Olsen, *QCPE, II, 309 (1976).*
- *9* E. Busmann,Z. *Anorg. Allgem.* Chem., 313, 90 (1961).
- 10 J. Witte and H. G. Schnering, Z. *Anorg. Allgem.* Chem., 327, 260 (1964).
- 11 R. J. Gillespie, *Chem. Sot. Revs., 8, 315 (1979).*
- 12 D. E. C. Corbridge and E. J. Lowe, *Nature, 170, 629 (1952).*
- 13 R. G. Pearson, *J. Am, Chem. Sot.. 91, 4947 (1969).*