(0-n-Butyl-P-phenyl-phosphonito-P)-Mercury Complexes

JOHANN EICHBICHLER and PAUL PERINGER*

Institut für Anorganische und Analytische Chemie der Universität Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria Received May 8, 1980

Phosphonito-mercury compounds GH5(n- C_4H_9O $P(O)HgX$, $(X = C_6H_5(n-C_4H_9O)P(O)$, Cl, Br, I, CN, C_6H_5 , OAc, O₃SCF₃, SCN, SC₆H₅, SC₂H₅ and *2,5-pyrroh'dindionato-N) were prepared from the corresponding phosphinic acid ester with HgO or with HgO and HgX,. The new compounds are characterized by a Hg-P bond and decompose easily with* fission of this bond. δ ⁽³¹P), δ ⁽¹⁹⁹Hg) and ¹J(³¹P-*'WHg) data are reported.*

Introduction

Metal complexes involving phosphorus compounds for which the following tautomeric equilibrium can be written, exhibit a

diversity of bonding modes [l] : Firstly, the neutral ligand may coordinate to the metal, secondly the deprotonated ligand is ambivalent, *i.e.* the metal may be bonded through the phosphorus or through the oxygen atom

All bonding types have been described *[2]* for mainly transition metal complexes derived from phosphonic acid diesters** $(RO)₂P(O)H$ and phosphine oxides** $R_2P(O)H$.

This paper deals with mercury complexes with a deprotonated phosphinic acid ester R(R'O)P(O)H.

The compounds will be named phosphonito complexes in analogy to the nomenclature used in the review article of Round-hill *et al. [2]* being derived from the ligand in its three-coordinate form regardless of the specific bonding mode.

Results and Discussion

Bis(O-n-butyl-P-phenylphosphonito-P)-mercury (2) was obtained according to reactions (la) and (lb).

$$
2C_6H_5(n-C_4H_9O)P(O)H + HgO \rightarrow
$$

\n
$$
I \qquad [C_6H_5(n-C_4H_9O)P(O)]_2Hg + H_2O \qquad (1a)
$$

\n
$$
2C_6H_5(n-C_4H_9O)P(O)H + Hg(OAc)_2 \rightarrow
$$

\n
$$
[C_6H_5(n-C_4H_9O)P(O)]_2Hg + 2HOAc \qquad (1b)
$$

Whilst being stable below 263 K, the compound was found to decompose at room temperature even in the dark according to eqn. (2).

$$
[C_6H_5(n-C_4H_9O)P(O)]_2Hg \rightarrow [C_6H_5(n-C_4H_9O)P(O)]_2 + Hg
$$
 (2)

The hypophosphonic acid derivative $[C_6H_5(n C_4H_9O$ P(O)]₂ has been identified by mass spectroscopy: m/e 394 M⁺, 339 (M - C₄H₇)⁺, 283 (339 - C_4H_8 ⁺, 265 (283 – H₂O)⁺ and others.

An analogous cleavage of mercury-phosphorus bonds has been reported for some phosphinito [3] $(R_2P(O)-)$ and phosphido [4] (R_2P-) mercury complexes and has been used synthetically for the formation of P-P bonds [5, 61. Homolytic fission of the Hg-P bond seems most likely as a first step, although no ESR signals could be detected when carrying out the reaction in an ESR spectrometer. This may be due either to the free radical concentration being too low to be detected or to a radical cage mechanism [7]. Compound 2 turned out, however, to be stable enough for NMR spectroscopic characterization.

Mixed mercury complexes of the type $C_6H_5(n C_4H_9O$)P(O)HgX were obtained according to reaction (3).

$$
2C_6H_5(n-C_4H_9O)P(O)H + HgO + HgX_2 \rightarrow
$$

$$
2C_6H_5(n-C_4H_9O)P(O)HgX + H_2O
$$
 (3)

 $X = CI$, Br, I, CN, C_6H_5 , OAc, O₃SCF₃, SCN, SC₆H₅, $SC₂H₅$ and 2,5-pyrrolidindionato-N.

^{*}Author to whom aII correspondence should be addressed. **Name **of the predominant tautomer.**

These compounds are unstable too and could not, like 2, be isolated analytically pure. Decomposition can be thought to proceed either via the asymmetric species itself or *via* 2 formed according to the equilibrium (4) (lying far on the side of the asymmetric product).

$$
2C_6H_5(n-C_4H_9O)P(O)HgX \rightleftharpoons [C_6H_5(n-C_4H_9O)P(O)]_2Hg + HgX_2 \quad (4)
$$

The first possibility seems to be more reasonable because some $C_6H_5(n-C_4H_9O)P(O)HgX$ decompose faster than $[C_6H_5(n-C_4H_9O)P(O)]_2Hg$. In the course of decomposition of $C_6H_5(n-C_4H_9O)P(O)HgCl$ in benzene, a white solid precipitated which was identified as mercurous chloride, resulting presumably from recombination of two HgCl radicals. Formation of $(HgCl)_2$ by a symmetrization reaction according to eqn. (5) could be excluded.

$$
2C_6H_5(n-C_4H_9O)P(O)HgCl + Hg \rightarrow [C_6H_5(n-C_4H_9O)P(O)]_2Hg + (HgCl)_2
$$
 (5)

When conducted in pyridine, subsequent dismutation of $(HgCl)_2$ took place as expected eqn. (6).

$$
(\text{HgCl})_2 \xrightarrow{\text{pyridine}} \text{HgCl}_2 \cdot \text{py}_2 + \text{Hg} \tag{6}
$$

Whenever the corresponding mercurous compound was not stable, direct formation of elemental mercury was observed.

The NMR spectroscopic investigation of the asymmetric mercury compounds was possible, however, with the exception of $X = O_3$ SCF₃ and SCN, where no ¹⁹⁹Hg NMR data could be obtained because of the instability of the compounds.

The ³¹P and ¹⁹⁹Hg NMR parameters are presented in Table I. The very high ³¹P-¹⁹⁹Hg coupling constants observed for the phosphonito mercury complexes indicate one bond coupling and thus direct bonding of phosphorus to mercury. This is further supported by ¹⁹⁹Hg NMR resonances occurring at rather high frequencies whereas mercury-oxygen bonded species would be expected to absorb around Oppm.

The bonding mode of the phosphonito ligand corresponds to structures observed for phosphito (Xray structure determinations have been carried out of $[(MeO)₂P(O)]₂Hg [8]$ and $(EtO)₂P(O)HgCl [9])$ and for phosphinito mercury compounds [3] .

The variation of ${}^{1}J(^{3}P-M)$ (M = ${}^{195}Pt$ and ${}^{199}Hg$) and related coupling constants [10] according to the ligand opposite was frequently explained in terms of the *trans*-influence $[11]$ of that group. The Hg-P bond, exhibiting presumably essentially σ -bond character, is weakened in the order O_3 SCF₃ $<$ OAc $<$ $Cl < Br < 2.5$ -pyrrolidindionato-N $<$ SCN $<$ I $<$ CN $<$ SC₆H₅ $<$ SC₂H₅ $<$ C₆H₅(n-C₄H₉O)P(O) $<$ C₆H₅. This sequence corresponds essentially to that found for the respective diethylphosphito-mercury compounds collected in Table II, for phosphinito-mercury compounds [3] and for the cationic mercury complexes $[(Me₃P)HgX]$ ⁺ [10]. Classification according to the element E bonded to mercury (neglecting some special substituents at E) yields a trans-influence order $C > P > S > O(N)^*$ closely resembling that found for platinum complexes [11]. The size of 1 J(31 P 199 Hg) of the phosphonito-mercury complexes was higher compared with the respective

TABLE I. NMR Parameters of Phosphonito-mercury Compounds $C_6H_5(n-C_4H_9O)P(O)HgX^a$.

X	$\delta(^{199}Hg)^b$	$\delta(^{31}P)$ b	$1J(31p-199Hg)^c$
C1	1231	85.6	10525
Br	1132	86.1	10288
I	921	89.9	9684
CN	1254	88.1	9136
C_6H_5	1356	116.7	4608
$C_4H_4NO_2^d$		81.6	10277
$C_6H_5(n-C_4H_9O)P(O)$	1217	111.3	5506
OAc	964	77.5	10902
O_3 SCF ₃		75.4	11080
SCN		89.5	9975
SC_6H_5	1309	94.2	7904
SC ₂ H ₅	1391	98.7	7271

 a Ca, 0.75 M solutions in pyridine, 300 K.

^bIn ppm to high frequency of aqueous $Hg(CIO₄)₂$ (2 mmol HgO/ml 60% HClO₄) or 85% H₃PO₄.

 $c_{In Hz.}$

d2,5-Pyrrolidindionato-N.

^{*}In the case of the oxoanions $O₃SCF₃$ and OAc coordination of the solvent pyridine to mercury is assumed.

 $a_{0.5}$ *M* solutions in pyridine, 300 K.

^b In ppm to high frequency of aqueous $Hg(CIO_4)_2$ (2 mmol HgO/ml 60% HClO₄) or 85% H₃PO₄.

 $c_{In~Hz}$

d2,5-Pyrrolidindionato-N.

eSimilar values have been reported in ref. 9.

phosphinito compounds but lower than in the phosphito-mercury compounds. Electronegative substitution at the phosphorus atom caused thus the $31P-$ ¹⁹⁹Hg coupling constant to increase. This effect has also been observed for $1J(31P-195Pt)$ in related platinum complexes.

Substitution at phosphorus also seems to affect the relative trans-influence of the phosphorus-ligand. Decreasing *trans*-influence with increasing electronegative substitution at the phosphorus atom is indicated by Table III.

TABLE III. Selected ¹J(³¹P-¹⁹⁹Hg) of R₁R₁P(O)HgX in Hz.

R_1	R_2	$X = R_1 R_2 P(O)$	C_6H_5
EtO	EtO	7601 ^a	5993 ^a
C_6H_5	$n-C4H9O$	5506 ^a	4608 ^a
t-C ₄ H ₉	t-C ₄ H ₉	2829 ^b	3094 ^b

aThis work.

 b Ref. 3.</sup>

The $31P$ NMR absorptions were found to be shifted to high frequencies when going from $C_6H_5(n C_4H_9O$)P(O)H to $C_6H_5(n-C_4H_9O)P(O)HgX$ analogously to the corresponding phosphito (Table II) and phosphinito compounds [3]. As can be seen from Fig. 1, there is a qualitative linear connection between $\delta^{(31)}P$) and ¹J(³¹P-¹⁹⁹Hg). A similar relation can be drawn for the phosphito mercury complexes.

The ¹⁹⁹Hg resonances of the asymmetric phosphonito (Table I) and phosphito compounds (Table II) were found between the values of the respective symmetric compounds with the exception of $C_6H_5(n C_4H_9O$)P(O)HgCl. There seems to be a qualitative connection between the resonance position of the

Fig. 1. Plot of δ (³¹P) versus ¹J(³¹P-¹⁹⁹Hg) of various complexes $C_6H_5(n-C_4H_9O)P(O)HgX$ $[C_4H_4NO_2 = 2,5-pyr$ rolidindionato-N] .

asymmetric compound relative to those of the respective symmetric compounds and the relative *trans*influence of the ligands involved. No 199 Hg resonance could be detected for (O-n-butyl-P-phenyl-phosphonito-P)-2,5-pyrrolidindionato-N-mercury and the respective diethylphosphito compound presumably due to scalar relaxation of the second kind of 199 Hg by $14N$ [13].

Mixtures of $C_6H_5(n-C_4H_9O)P(O)HgX$ and $C_6H_5(n C_4H_9O$)P(O)HgY display ¹⁹⁹Hg NMR doublets due to $P^{-199}Hg$ coupling intermediate in size compared
th ¹ I(³¹P-¹⁹⁹Hg) of the pure compounds. This with $\frac{1}{3}$ $J(31P-199Hg)$ of the pure compounds. This indicates rapid ligand exchange according to eqn. (7) for X, $Y = \overline{C}$, Br, I; $X \neq Y$.

 $C_6H_5(n-C_4H_9O)P(O)HgX + C_6H_4(n-C_4H_9O)P(O)HgY$ $C_6H_6(n-C_4H_9O)P(O)HgY + C_6H_4(n-C_4H_9O)P(O)HgX$

Experimental

 $31P$ and $199Hg$ NMR spectra were recorded in the FT-mode on a multinuclear Bruker WP-80 spectrometer.

Phenylphosphinic acid butylester (I) was made from phenylphosphonous dichloride and n-butanol $[14]$. $\delta(^{31}P)$, pyridine = 23.2 ppm, $^1J(^{1}H-^{31}P)$ = 560 Hz. MS: m/e $143(M - C_4H_8)^+$, 100%, 125(M -OBu)', 25% and others.

Bis(O-n-butyl- P-phenyl-phosphonito-P)-mercury (2) was prepared by treating I with an equivalent amount of yellow mercuric oxide in benzene at 50 \mathcal{C} .

The mixed compounds $C_6H_5(n-C_4H_9O)P(O)HgX$ $(X = C1, Br, I, CN, C₆H₅, O₃SCF₃, OAc, SCN, SC₆H₅$ $SC₂H₅$ and 2,5-pyrrolidindionato-N) were obtained by reacting equivalent quantities of I , mercuric oxide and HgX_2 in pyridine.

The HgX₂ used were either commercial $(X = C)$, Br, I, CN, SCN, OAc, C_6H_5) or prepared as described in the literature [15, 161.

The phosphito mercury complexes $(EtO)₂P(O)$ -HgX (X as specified above) were synthesized according to the literature $[18]$ $(X = Cl, Br, I, OAc,$ SCN) or analogously to the phosphonito complexes above $(X = CN, C_6H_5, O_3SCF_3, SC_6H_5, SC_2H_5$ and 2,5-pyrrolidindionato-N). Attempts to prepare $(EtO)₂P(O)HgC₆H₅$ according to the method of Mukaiyama et *al.* [20] were unsuccessfull.

Acknowledgements

Thanks are due to Professors A. Engelbrecht and K. E. Schwarzhans for making possible this work and to the Fonds zur Förderung der Wissenschaft, Vienna, for making available the NMR spectrometer.

References

- 1 K. R. Dixon and A. D. Rattray, Can. J, *Chew* 49, 3997 (1971).
- *2* D. M. Roundhill, R. P. Sperline and W. B. Beaulieu, *3* P. Peringer and J. Eichbichler, .I. Inorg. Nucl. *Chem.,* in *Coord. Chem. Rev., 26, 263 (1978).*
- *4* J. Escudie, C. Couret and J. Satge, Bull. Sot. *Chim.* $\frac{1}{2}$
- *fiance, ZI, 361* (1978).
- *5* G. N. Bockerman and R. W. Parry, J. *Znorg. Nucf. Chem.,* H. H. Hyman Memorial Vol., 55 (1976).
- *6* M. Baudler and A. Zarkadas, Chem. *Ber., 105, 3844* (1972).
- *7* N. S. Vyazankin, G. A. Razuvaev, E. N. Gladyshev and T. G. Gurikova, *Dokl. Akud. NaukSSSR, 155, 1108 (1964).*
- *8 G. G.* Mather and A. Pidcock, J. *Chem. Sot. Dalton l?ans., 560* (1973).
- *9* J. Benett. A. Pidcock and C. R. Waterhouse, J. *Chem. Sot. A, 2094* (1970).
- 10 P. L. Goggin, R. J. Goodfellow, D. M. McEwan, A. J. 11 T. G. Appleton, H. C. Clark and L. E. Manzer, *Coord.* Griffiths and K. Kessler, J. Chem. *Research (M), 2315 (1979).*
- 12 A. Pidcock, L. M. Venanzi and R. E. Richards, J. Chem. *Chem. Rev., 10, 335* (1973).
- 13 P. Peringer,Znorg. *Chim. Acta, 42, 129 (1980).* Soc. A, 1707 (1966).
-
- 14 *G.* M. Kosolapoff, J. *Am. Chem. SOL, 72, 4292 (1950).*
- \mathcal{L}_1 \mathcal{L}_2 Robbington, and A. N. Necmotionov, 'The organic 16 P. Peringer, *J. Znorg. Nucl. Chem.,* in press. compounds of mercury', North Holland Publ. Comp., Amsterdam (1967).
-
- 1, Duitsu, *S. Hots, Hack, Chem.*, *Ill pleas.*
D. D. Fox and D. J. Venezky, *J. Am. Chem. Soc.*, 75, 18 D. L. Venetzky and R. B. Fox, J. *Am.* Chem. Sot., 78, *3967 (1953).*
- 19 C. Glidewell, *Znorg, Chim. Acta, 27, 129 (1978).* 1664 (1956).
- \mathcal{L} , United went, *IROR*, Chimi, Actu, 27, 127 (1770).
- *Chem.,* 28, 2024 (1963).