Alkylthiomethylpalladium Compounds

HELEN M. McPHERSON and JAMES L. WARDELL*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB9 2UE, U.K.

Received April 11, 1983

Syntheses of $[PPh_2R]_2Pd(CH_2SR')Cl]$ (R = Ph, R' = Me or Ph; R = Me, R' = Me) were obtained by oxidative addition of $R'SCH_2Cl$ to $(PPh_2R)_4Pd$. Metathetic reactions of $[(PPh_2R)_2Pd(CH_2SR')Cl]$ with MX (KBr, KI, KSCN or AgNO₃) provide $[(PPh_2-R)_2Pd(CH_2SR')X]$ or $[(PPh_3)Pd(CH_2SMe)X]$ (X = Br or I). Extensive dissociation of $[(PPh_2R)_2Pd(CH_2-SR')Cl]$ occurs in solution. Exchange occurs between $[(PPh_2R)_2Pd(CH_2SR')X]$ and phosphines or phosphites.

Reactions with halogens (Y_2) were also studied, the organosulphur products of $[(PPh_2R)Pd(CH_2-SR')X]$ (n = 1 or 2) were generally found to be YCH_2SR' and XCH_2SR' from each reaction.

Introduction

Organopalladium compounds containing CH_2SR ligands have been variously reported in the past few years [1-9]. A CH_2SR ligand can act both as a bidentate ligand as in (I)-(III) and as a monodentate unit, as in (IV).

Simply by recrystallisation can (IV) be converted to (I) [6]. In CH₂Cl₂ solution, (IV) has been found to be partially dissociated [6].

Much of the interest with these compounds has centred on structures in the solid state; crystal structures of (I)-(IV) have been determined [1-4]. Less mention has been made of solution properties and of reactions. We have made a brief report on some reactions of (IV) and related compounds with halogens, alkyl halides and proton acids [7]. Other reactions to have been reported upon include (i) metathetic exchange of Cl in (IV) using KBr or KI [6], (ii) formation of cationic complexes (III) from (IV), e.g. using NH₄⁺PF₆ or Et₃O⁺BF₄ [1, 6, 8], (iii) reactions of (I) with AgO_2CCF_3 to give [(PPh₃) $Pd(CH_2SMe)O_2CCF_3$] (V), (iv) reaction of (I) with TlCp to give [(PPh₃)Pd(Cp)CH₂SMe] and (v) insertion reactions of (V) (into Pd-C) using MeO₂CC= CCO₂Me or norbornadiene.

In this paper, we wish to report on further preparations of $Pd-CH_2SR$ compounds and on reactions with halogens.

Results and Discussion

Compounds $[(PPh_2R)_2Pd(CH_2SR')Cl]$ (R = Ph, R' = Me(IV); R = R' = Ph, R = R' = Me] were prepared from $(PPh_2R)_4Pd$ and $ClCH_2SR'$ in essentially the same manner as that previously reported [6]. The compound [(PPh₂Me)₂Pd(CH₂SMe)Cl], was assigned a cis-structure in solution from the doublet (J(PH) 8 Hz) for P-Me in the ¹H NMR spectrum. The preparation of [(PPh₂R)₂Pd(CH₂SR')Cl] via oxidative addition of ClCH₂SR' to (PPh₂R)₄Pd contrasts with failure to obtain $\{(PPh_3)_2Pd[(CH_2)_nSR]X\}$ (n = 2, 3; X = Cl, Br or I) by similar reactions. Colour changes did indicate some interaction between X(CH₂)_nSR and (PPh₃)₄Pd but none of the desired products were obtained. Attempts to prepare $[(PPh_2Me)_2Pd(CH_2 \cdot$ SPh)Cl] by this oxidative addition route were not successful since the major product obtained was cis-[(PPh₂Me)₂PdCl₂]. No reaction occurred with $[P(OEt)_3]_4Pd$. Complete recovery of $[P(OEt)_3]_4Pd$ was obtained from mixtures of [P(OEt)₃]₄Pd and

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

Compound	Molecular	Weight in CHCl	3 at 25 °C	Molar Conductivity in CH ₂ Cl ₂ at 25 °C		
	Calc.	Found	Conc. 10 ³ mol 1 ⁻¹	$\Omega^{-1} \mathrm{cm}^2 \mathrm{mol}^{-1}$	Conc. $10^3 \text{ mol } 1^{-1}$	
[(PPh ₃) ₂ Pd(CH ₂ SMe)Cl]	726.5	470	1.40	5.5	1.8	
[(PPh ₃) ₂ Pd(CH ₂ SPh)Cl]	785.5	455	1.26	4.2	1.8	
$[(PPh_2Me)_2Pd(CH_2SMe)Cl]$	602.5	490	2.37			

TABLE I. Molecular Weight and Molar Conductivity of [(Ph2RP)2Pd(CH2SR')Cl] in Solution.

TABLE II. ¹H Chemical Shifts of PdCH₂SMe in Solutions of [(Ph₃P)Pd(CH₂SMe)X] and Ligands, L, in CDCl₃ Solution at 34 °C.

	Equivalents of L	PPh ₃		PPhMe ₂ ^a		PPh ₂ Me ^b		P(OMe) ₃ ^c	
		δCH ₂	δCH ₃	δCH ₂	δCH ₃	δCH ₂	δCH_3	δCH ₂	δCH ₃
[(Ph ₃ P)Pd(CH ₂ SMe)Cl]	0	2.68	2.33						
	0.2	3.04	2.31	2.94 br	2.24	2.86	2.31	3.22	2.33
	0.4	3.12	2.29	2.96br	2.24	2.91	2.31	3.36	2.36
	0.6	3.18	2.29	2.98br	2.16	3.13	2.27	3.44	2.38
	1.0	3,20	2.24	2.87br	2.09	3.18	2.20	3.47	2.44
	2.0	3.40	2.24	2.16br	2.07	2.76br	2.11	3.33	2.47
	>5	3.42	2.24	d	d	2.72br	2.11	3.11	2.47
[(Ph ₃ P)Pd(CH ₂ SMe)Br]	0	2.72	2.36						
	0.2	3.04	2.33	2.92	2.36			2.93	2.33
	0.4	3.33	2.31	3.14	2.34			3.04	2.33
	0.6	3.33	2.31	3.26	2.32			3.22	2.36
	1.0	3.44	2.31	3.17br	2.28			3.40	2.40
	2.0	3.49	2.29	2.45	2.06			2.53	2.50
	>5	3.51	2.31	2.32	1.92			d	2.53
[(Ph ₃ P)Pd(CH ₂ SMe)I]	0	2.72	2.36						
	0.2	2.89	2.31	2.96	2.33			2.89	2.31
	0.4	3.27	2.27	3.16	2.36			3.02	2.31
	0.6	3.31	2.24	3.22	2.33			3.20	2.33
	1.0	3.40	2.27	3.13br	2.20			3.28	2.47
	2.0	3.44	2.27	2.49	2.00			3.51	2.47
	>5	3.49	2.24	2.36	1.84			3.49	2.47

^aFree PPhMe₂: δ 1.27 d J_{PH} 2.0 Hz: change on complexation to δ1.80br. ^bFree PPh₂Me: δ 1.60 d J_{PH} 1.5 Hz: change on complexation to δ 1.98 dJ_{PH} 8.0 Hz. ^cFree P(OMe)₃: δ 3.51 d J_{PH} 10.7 Hz: change on complexation to δ 3.6-3.7 dJ_{PH} 10.7 Hz. ^dObscured.

 $ClCH_2SR'$. All [(PPh₂R)₂Pd(CH₂SR')Cl] were stable both as solids (at least for weeks) and in solution (at least for days); decomposition does occur on melting.

As reported, repeated recrystallisation of (IV) leads to formation of (I).

 $[(PPh_3)_2Pd(CH_2SMe)C] \xrightarrow{-PPh_3} [(PPh_3)Pd(CH_2SMe)C]]$ $(IV) \qquad (I)$

Analogous situations did not arise with $[(PPh_3)_2$ -Pd(CH₂SPh)Cl] or $[(PPh_2Me)_2Pd(CH_2SMe)Cl]$. Recovery of these diphosphine compounds was always achieved on recrystallisation despite the considerable dissociation of these compounds in solution. Okawara *et al.* [6] studied the dissociation of (*IV*) in CH₂Cl₂ at 25 °C and [(PPh₃)₂Pd(CH₂-SMe)Br] in CHCl₃ at 37 °C by an osmotic molecular weight method. Similarly in this study dissociation was found to occur in CHCl₃ solution at 25 °C for (*IV*), [(PPh₃)₂Pd(CH₂SPh)Cl] and [(PPh₂Me)₂-Pd(CH₂SMe)Cl], see Table I. The greater dissociation of PPh₃ compared to PPh₂Me is that expected from other results [10]. Molar conductivities were also determined by us and found to be low with

TABLE III. ¹H Chemical Shifts of PdCH₂SR' in Solutions of $[(Ph_2RP)_2Pd(CH_2SR')Cl]$ and Ligands, L, in CDCl₃ Solution at 34 °C.

	Equivalents	Ligand L				
	of L	PPh ₃ δCH ₂	PMe_2Ph^a δCH_2	P(OMe) ₃ ^b δCH ₂		
[(Ph ₃ P) ₂ Pd(CH ₂ SPh)Cl]	0	2.42				
	0.2	2.35	2.40	2.44		
	0.4	2.33	2.38	2.82		
	0.6	2.29	2.38	3.18		
	1.0	2.29	2.33	3.20		
	2.0	2.24br	2.24	3.22		
	>5	2.20br	2.09	3.22		
[(Ph ₃ P) ₂ Pd(CH ₂ SMe)Cl]	0	3.26				
	0.2	3.26	3.28	3.31		
	0.4	3.27	3.30	3.44		
	0.6	3.33	3.30	3.44		
	1.0	3.38	2.87	3.47		
	2.0	3.40	1.76	3,42		
	>5	3.42	2.02	3.42		
[(Ph ₃ P) ₂ Pd(CH ₂ SMe)C1]	0	2.71				
	0.2	2.82	2.73	2.76		
	0.4	2.82	2.62	2.80		
	0.6	2.82	2.51	2.87		
	1.0	2.89	2.42	2.87		
	2.0	2.91	2.27	2.93		
	>5	2.91	2.20	3.04		

^aFree PMe₂Ph: δ 1.27 d J_{PH} 2.0 Hz: change on complexation to 1.7–1.9. ^bFree P(OMe)₃: δ 3.51 d J_{PH} 10.7 Hz: change on complexation to 3.6–3.7.

values for (*IV*) and [(PPh₃)₂Pd(CH₂SPh)Cl] in CH₂-Cl₂ solution of 5.5 and 4.2 cm² Ω^{-1} mol⁻¹ respectively at 1.8 × 10⁻³ mol l⁻¹, compared to a value of 7 cm² Ω^{-1} mol⁻¹ for (*IV*) obtained by Okawara *et al.* [6] at 1.08 × 10⁻³ mol⁻¹ l⁻¹. In our view, the molar conductivity and molecular weight data are best accommodated by dissociation as the major process of Ph₂RP from [(PPh₂R)₂Pd(CH₂SR')Cl]

$$[(PPh_2R)_2Pd(CH_2SR')C1] \rightleftharpoons$$

$$[(PPh_2R)Pd(CH_2SR')Cl] + PPh_2R$$
(1)

in solution to provide neutral (IV) and $[(PPh_2R)Pd-(CH_2SR')Cl]$ rather than dissociation of Cl⁻ as suggested by Okawara *et al.* [6] as another dominant process. Free ions arising from the latter process are not present to any significant extent, as shown by the conductivity data, and the presence of ion-pairs of $[(Ph_2RP)_2Pd(CH_2SR')]^+$, Cl⁻ (VI) would not satisfy the molecular weight data. Of course free ions and ion pairs (VI) could be present to small extents. Addition of PPh₃ to (IV) and to [(PPh₃)₂Pd(CH₂SPh)Cl] in CH₂Cl₂ solution leads to increasing conductivity, *e.g.* to 38 and 10.8 cm² Ω^{-1} mol⁻¹ for (*IV*) and [(PPh₃)₂Pd(CH₂SPh)Cl] with 12 equivs of PPh₃ present. This we feel is due to equilibrium (2) being displaced further to the right, although it must be pointed out that the molar conductivities are still low and the amounts of free ions in solution are very small.

$$[(PPh_3)_2Pd(CH_2SR)Cl] + (PPh_3) \rightleftharpoons$$
$$[(PPh_3)_3PdCH_2SR]^+ + Cl^- \qquad (2)$$

or ion pairs

Various neutral ligands, L, in addition to PPh₃, were added to solutions of $[(PPh_2R)_2Pd(CH_2SR')$ -Cl] and $[(PPh_3)Pd(CH_2SMe)X]$ in CDCl₃ and the interactions were monitored by ¹H NMR spectroscopy. Changes in δCH_2 in the ¹H NMR spectra were observed for additions of phosphines (PRh_{3-n}-Me_n) and phosphites, P(OMe)₃ or P(OEt)₃, but not for other ligands such as Ph₃Sb, Ph₃SbO, Ph₃AsO, Et₃N, PhNH₂, MeSPh or Me₂SO (see Tables II and III).

TABLE IV. Estimated ¹H Chemical Shift Values for PdCH₂-SMe for undissociated $[L_2Pd(CH_2SMe)X]$ in CDCl₃ Solution δ CH₂ of $[L_2Pd(CH_2SMe)X]$.

L ₂	Cl	х		
		Br	I	
(PPh ₃) ₂	3.46	3.51	3.49	
$(PPh_2Me)_2$	2.72			
$(PPhMe_2)_2$	2.18	2.32	2.36	
$[P(OMe)_3]_2$	3.42	3.53	3.49	
(PMe ₂ Ph)(PPh ₃)	3.2	3.4	3.3	
(PMePh ₂)(PPh ₃)	3.2			
$[P(OMe)_3](PPh_3)$	3.5			
(PMe ₂ Ph)(PMePh ₂)	2.2			

Addition of L to
$$[(PPh_3)Pd(CH_2SMe)X]$$
 prod-
uced successively $[(PPh_3)LPd(CH_2SMe)X]$ and $[L_2-Pd(CH_2SMe)X]$ complexes with monodentate CH_2 -
SMe groups.

$$\begin{array}{c|c} X & CH_2 & +L \\ \hline Ph_3 P & S_{Me} & CH_2 & L \\ \hline Ph_3 P & S_{Me} & L \\ \end{array} \begin{bmatrix} (PPh_3)LPd (CH_2 SMe)X \end{bmatrix}$$

 $[L_2 Pd(CH_2 SMe)X]$

As already mentioned, $[(PPh_2R)_2Pd(CH_2SR')X]$, is partially dissociated in solution. The values of δCH_2 so found for solutions of $[(PPh_2R)_2Pd(CH_2-SR')X]$ are thus average values for the amounts of undissociated compound and $[(PPh_2R)Pd(CH_2SR')$ -

TABLE V. Organopalladium Products from Reaction of [(PPh2R)2Pd(CH2SR')Cl] with MX in THF/H2O.

мх	Product	M.p. (°C) (dec.)	Anal, Calc. (Found)			$v ({\rm cm}^{-1})$	¹ H		
			С	н	x	S		δCH_2^a	δCH ₃ ^{a,b}
From [/	PPh ₃) ₂ Pd(CH ₂ SPh)Cl]								
KBr	[(PPh ₃) ₂ Pd(CH ₂ SPh)Br]	155-60	61.9 (61.2)	4.4 (4.9)	9.6 [Br] (10.4)			2.73	
KI	$[(PPh_3)_2Pd(CH_2SPh)]]$	155-8	60.0 (59.3)	4.2 (3.7)	14.4 [I] (14.8)			2.94	
KSCN	[(PPh ₃) ₂ Pd(CH ₂ SPh)SCN]	144-8	63.6 (63.7)	4.6 (4.3)	1.7 [N] (1.9)		2080(CN)	2.47	
AgNO ₃	[(PPh ₃) ₂ Pd(CH ₂ SPh)NO ₃]						1635(ONO ₂) 1260	3.42	
SnCl ₂	$[(PPh_3)_2Pd(CH_2SPh)SnCl_3]$	156-8	52.7 (52.9)	3.8 (3.8)	10.9 [Cl] (11.2)		360(Sn-Cl) 305	3.47	
From [/	$PPh_3)_2Pd(CH_2SMe)Br]$								
KBr	[(PPh ₃)Pd(CH ₂ SMe)Br	198-200	47.2 (47.1)	3.9 (4.2)	15.7 [Br] (15.4)	(6.3)		2.70 Ј <mark>рн</mark> 2Нz	2.34 Ј _{РН} 4.0Hz
KI	[(PPh ₃)Pd(CH ₂ SMe)]]	200-3	43.2 (42.8)	3.6 (3.6)	22.8 [I] (23.0)	5.8 (6.0)		2.70 J _{PH} 2Hz	2.34 J _{PH} 4.0Hz
KSCN	$[(PPh_3)_2Pd(CH_2SMe)SCN]$	167–70	62.5 (62.3)	4.7 (4.9)	1.9 [N] (2.0)	4.3 (4.2)	2090(CN) 320(Pd-S)	3.13	2.42
SnCl ₂	${(PPh_3)_2 Pd(CH_2 SMe)SnCl_3}$	163-6	49.8 (49.5)	3.8 (3.8)	11.6 [Cl] (11.9)	3.5 (3.9)	350(SnCl) 300	3.37	2.18
AgNO ₃	$[(PPh_3)_2Pd(CH_2SMe)NO_3]$						1630(ONO ₂) 1260	3.13	2.22
From [/	PPh2Me)2Pd(CH2SMe)Cl]								
KBr	[(PPh ₂ Me) ₂ Pd(CH ₂ SMe)Br]	168-70	51.9	4.8	12.4 [Br]	5.0		2.98	2.36 [°]
KI	$[(PPh_2Me)_2Pd(CH_2SMe)]]$	160-2	(31.6) 48.4 (48.5)	(4.7) 4.5 (4.3)	(11.9) 18.3 [1] (18.0)	(4.5) 4,6 (4.3)		3.18	2.40 ^d
^a In CDC	Cl ₃ solution. ^b CH ₃ group in Cl	H ₂ SCH ₃ .	^{c 1} H P(M	ePh ₂)δ	1.98 (J _{PH} 8	Hz).	d ¹ H P(MePh ₂)	5 1.93 (J _{PH}	(8 Hz).

TABLE VI. Organosulphur Products from Reacti	ion of [(PPh ₂ R) _n Pd(CH ₂ SR ⁴)X] with Halogens in CDCl ₃ Solution.
--	--	--

Reagents		Relative Yields of Organosulphur Products
$[(PPh_2R)_n Pd(CH_2SR')X]$	Halogen	
$[(PPh_3)_2Pd(CH_2SMe)Cl]$	Br ₂	$CICH_2SMe$ (20) + $BrCH_2SMe$ (80)
	I ₂	$CICH_2SMe(50) + ICH_2SMe(50)$
[(PPh ₃) ₂ Pd(CH ₂ SMe)SCN]	Br ₂	$(SCN)CH_2SMe (50) + BrCH_2SMe (50)$
	I ₂	$(SCN)CH_2SMe (20) + ICH_2SMe (80)$
[(PPh ₃) ₂ Pd(CH ₂ SMe)SnCl ₃]	Br ₂	$CICH_2SMe$ (65) + $BrCH_2SMe$ (35)
	I ₂	$CICH_2SMe$ (65) + $BrCH_2SMe$ (35)
$[(PPh_3)_2Pd(CH_2SMe)NO_3]$	Br ₂	$(NO_3)CH_2SMe (45) + BrCH_2SMe (55)$
	I ₂	$(NO_3)CH_2SMe (100)$
[(PPh ₂ Me) ₂ Pd(CH ₂ SMe)Cl]	Br ₂	$CICH_2SMe$ (100)
	I ₂	$CICH_2SMe$ (85) + ICH_2SMe (15)
$[(PPh_2Me)_2Pd(CH_2SMe)Br]$	Br ₂	BrCH ₂ SMe
	I ₂	$BrCH_2SMe$ (90) + ICH_2SMe (10)
$[(PPh_2Me)_2Pd(CH_2SMe)]]$	Br ₂	$ICH_2SMe (10) + BrCH_2Me (90)$
[(PPh ₃) ₂ Pd(CH ₂ SPh)Cl]	Br ₂	$ClCH_2$ SPh (100)
	I ₂	$ClCH_2SPh$ (60) + ICH_2SPh (40)
[(PPh ₃) ₂ Pd(CH ₂ SPh)Br]	I ₂	$BrCH_2SPh$ (80) + ICH_2SPh (20)
[(PPh ₃) ₂ Pd(CH ₂ SPh)I]	Br ₂	ICH_2 SPh (20) + BrCH ₂ SPh (80)
[(PPh ₃) ₂ Pd(CH ₂ SPh)SCN]	Br ₂	$(SCN)CH_2SPh (70) + BrCH_2SPh (30)$
	I ₂	$(SCN)CH_2SPh (55) + ICH_2SPh (45)$
[(PPh ₃) ₂ Pd(CH ₂ SPh)SnCl ₃]	Br ₂	$ClCH_2SPh$ (60) + $BrCH_2SPh$ (40)
	I ₂	$ClCH_2SPh$ (75) + ICH_2SPh (25)
[(PPh ₃) ₂ Pd(CH ₂ SPh)NO ₃]	Br ₂	$(NO_3)CH_2SPh (35) + BrCH_2SPh (65)$
	I ₂	$(NO_3)CH_2SPh$ (100)
[(PPh ₃)Pd(CH ₂ SMe)Cl]	Br ₂	$CICH_2SMe$ (20) + $BrCH_2SMe$ (80)
	I ₂	$ClCH_2 SMe (50) + ICH_2 SMe (50)$
[(PPh ₃)Pd(CH ₂ SMe)Br]	I ₂	$BrCH_2SMe$ (95) + ICH_2SMe (5)
$[(PPh_3)Pd(CH_2SMe)I]$	B ₂₂	$ICH_2SMe(5) + BrCH_2SMe(95)$

X] present in solution. By adding PPh₂R to solutions of $[(PPh_2R)_2Pd(CH_2SR')X]$, it was possible to obtain δCH_2 for completely undissociated $[(PPh_2-R)_2Pd(CH_2SR')X]$. Values of δCH_2 for undissociated species are listed in Table IV. Other processes recognized were phosphine exchanges in $[(PPh_2R)_2Pd(CH_2SR')C1]/L$ systems.

Metathetic reactions of $[(PPh_2R)_2Pd(CH_2SR')Cl]$ have been reported using salts such as KBr [6], NH₄⁴PF₆, Ag⁺PF₆ and $[Et_3O]^+BF_4$. We have extended the range of these reactions; eqns. (3) and (4).

 $[(PPh_2R)_2Pd(CH_2SR')Cl] + MX \longrightarrow$

$$[(PPh_2R)_2Pd(CH_2SR')X]$$
(3)

 $X = Br, I, NO_3, SCN$

 $[(PPh_2R)_2Pd(CH_2SR')C1] + SnCl_2 \longrightarrow$

$$[(PPh_2R)_2Pd(CH_2SR')SnCl_3]$$
(4)

However from the reaction of (IV) with KBr or KI, only the monophosphine complexes, $[(PPh_3)-Pd(CH_2SMe)X]$, X = Br or I, were isolated from the reaction solutions.

$$[(PPh_3)_2Pd(CH_2SMe)Cl] + KX \xrightarrow{-KCl} [(PPh_3)Pd(CH_2SMe)X]$$
(5)

In the main, satisfactory spectral and analytical data were obtained (see Table V). The NO₃ product could not be crystallised but spectral data of the oily product indicated its formation. Reactions of (IV) with KCN did not lead to any isolatable product.

Reactions with Halogens

Halogens are known to cleave palladium—carbon bonds [11]. Exothermic reactions occurred between [(PPh₂R)_nPd(CH₂SR')X] (n = 1 or 2) and equimolar Br₂ or I₂ in CDCl₃ solution. Precipitates of phosphine palladium dihalides rapidly formed and complete cleavage of the Pd-C bond resulted in very short reaction times. The organic products, YCH₂. SR' (Y = Br, I or X) were detected by ¹H NMR $[(PPh_2R)_2Pd^{II}(CH_2SR')X] + Y_2 \longrightarrow$

$$[(PPh_2R)_2Pd^{IV}(CH_2SR')XY_2] \longrightarrow$$

$$[(PPh_2R)_2Pd^{II}XY] + YCH_2SR' +$$

$$+ [(PPh_2R)_2Pd^{II}Y_2] + XCH_2SR' \qquad (6)$$

spectroscopy and the relative yields are quoted in Table VI. As shown in Table VI and in eqn. 6, two organosulphur products, YCH_2SR' , were frequently obtained in which Y was derived both from the organopalladium reagent and from the reacting halogen. These products derive from the transient intermediate oxidative addition species $[(PPh_2R)_nPd(CH_2SR')XY_2]$ (VII) by reductive elimination. From the relative Pd-halogen bond strengths, viz. Pd-I > Pd-Br > Pd-Cl, it would be expected that the preferred sequence of formation of products would be $CICH_2SR > BrCH_2Sr > ICH_2SR$. The observed ratio of products clearly indicate that factors in addition to bond strengths must also play roles. An important factor must be the arrangement of the halogens in the octahedral intermediate (VII).

Experimental

Solvents used were deoxygenated and redistilled prior to use. A nitrogen atmosphere was employed.

Chloromethyl methyl sulphide was a commercial sample. Chloromethyl phenyl sulphide and chloromethyl *p*-tolyl sulphide were prepared by treatment of the appropriate methyl aryl sulphoxide with a saturated solution of hydrogen chloride in Et_2O in the presence of 3A molecule sieves [12] for 2 h. After decanting off the molecular sieves, the solvent was removed and the yellow residue was distilled under reduced pressure. Analysis and ¹H NMR spectral data were as expected.

Compounds, $(Ph_3P)_4Pd$ [13], $(Ph_2MeP)_4Pd$ [10] and $[(EtO)_3P]_4Pd$ [14] were prepared according to literature procedures.

Preparation of [(Ph₂RP)₂Pd(CH₂SR')Cl]

To a suspension of tetrakis(triorganophosphine)palladium, $(Ph_2RP)_4Pd$, in de-oxygenated PhH, was added dropwise ClCH₂SR' (5 equiv.) in de-oxygenated PhH. The reaction mixture was stirred under N₂ for 3 h at R.T. The solvent volume was reduced and hexane added, precipitating a yellow solid, which was recrystallised from CH₂Cl₂/hexane. Yields were greater than 90%. **Products**

trans-[Chloro(methylthiomethyl)bis(triphenylphosphine)palladium(II)]•dichloromethane trans-[(Ph₃P)₂Pd(CH₂SMe)Cl]•CH₂Cl₂, m.p. 143– 4 °C (lit. m.p. 144 °C dec [5,6]). ν(Pd–Cl) 275 cm⁻¹. Anal. C₃₉H₃₇Cl₃SP₂Pd Calcd: C, 57.7; H, 4.5; S, 3.9; Cl 13.1%. Found: C, 57.8, H, 4.3; S, 3.5; Cl, 13.1%.

[Chloro(phenylthiomethyl)bis(triphenylphosphine)palladium(II)]

[(PPh₃)₂Pd(CH₂SPh)Cl], m.p. 180–3 °C dec. ¹H NMR spectrum (100 MHz. CDCl₃): δ 2.42 (2H, s), 6.94 (5H, m), 7.30 and 7.64 (30H, 2 m). ν (Pd–Cl) 285 cm⁻¹. *Anal.* C₄₃H₃₇ClSP₂Pd. Calcd. C, 65.4; H, 4.7; S, 4.1; Cl, 4.5%. Found: C, 65.2; H, 4.5; S, 3.9, Cl, 4.4%.

[Chloro(methylthiomethyl)bis(methyldiphenylphosphine)palladium(II)]

 $[(PPh_2 Me)_2 Pd(CH_2 SMe)Cl]$, m.p. 163-6 °C dec (lit. [6] 167 °C dec.). ¹H NMR (60 MHz, CDCl₃) δ 2.06 (6H, d, J_{PH} 8.0 Hz), 2.11 (3H, s), 2.71 (2H, s), 7.40 and 7.60 (20H, 2m). ν (Pd-Cl) 280 cm⁻¹. Anal. C₂₈H₃₁ClSP₂Pd. C, 53.8; H, 4.6; S, 5.3; Cl, 5.9%. Found: C, 53.1; H, 5.0; S, 4.9; Cl, 6.1%. [Chloro(p-tolylthiomethyl)bis(triphenylphosphine)palladium(II)] was also prepared as an oil but could not be crystallised. ¹H NMR (60 MHz, CDCl₃) δ 2.29 (3H, s), 2.78 (2H, s), 7.11, 7.38 and 7.62 (34H, m).

Tetrakis(triethylphosphine)palladium(0) was recovered (>80%) from a refluxed PhH solution of $[(EtO)_3P]_4Pd$ and ClCH₂SMe.

Preparation of chloro(methylthiomethyl)(triphenylphosphine)palladium(II) [(PPh₃)Pd(CH₂SMe)Cl]

trans-Chloro(methylthiomethyl)bis(triphenylphosphine)palladium(II) (10 g, 1.4×10^{-3} mol) was dissolved in the minimum volume of CH₂Cl₂ and Et₂O was added until the solution became cloudy. Crystals were collected after leaving overnight at 0 °C. Repeated recrystallisation from Et₂O/CH₂Cl₂ gave [(PPh₃)Pd(CH₂SMe)Cl], m.p. 209–211 °C dec. (lit. [6] 210 °C dec. ¹H NMR (60 MHz, CDCl₃, 35 °C] δ 2.34 (3H, s), 2.68 (2H, s), 7.42 and 7.76 (15H, m).

¹H NMR (60 MHz, CDCl₃, -40 °C) δ 2.34 (3H, d, J 4.0 Hz), 2.68 (2H, d J 2.0 Hz), 7.42 and 7.76 (15H, m). ν (Pd-Cl) 273 cm⁻¹. *Anal.* C₂₀H₂₀ClSPPd. Calcd. C, 51.7; H, 4.3; S, 6.9; Cl, 7.6%. Found: C, 51.4; H, 4.4; S, 6.6, Cl, 7.8%.

Interactions of $[(Ph_2RP)_2Pd(CH_2SR')Cl]$ or $[(Ph_3P)Pd(CH_2SMe)X]$ with Phosphines and other Neutral Ligands

To a solution of the organopalladium compound [ca. $6-8 \times 10^{-5}$ mol] in CDCl₃ (0.5 ml) were added known amounts of the ligand (L).

Alkylthiomethylpalladium Compounds

The interactions were monitored by 60 MHz ¹H NMR spectroscopy. (see Tables II and III).

Reactions of [(Ph₂RP)₂Pd(CH₂SR')Cl] with Inorganic Salts

To a solution of the organopalladium compound $(2.75 \times 10^{-4} \text{ mol})$ in THF (20 ml) was added the inorganic salt (2 equiv.) in H₂O (3 ml). The reaction mixture was stirred for ½ h at R.T. and the solvent was then removed under reduced pressure. The residue was recrystallised from CH₂Cl₂/hexane. Products, analyses and some spectral data are listed in Table V. Reaction with KCN however did not provide [(Ph2-RP)₂Pd(CH₂SR')CN]. Reaction with AgNO₃ did proceed but the [(Ph₂ RP)₂ Pd(CH₂ SR')NO₃] product would not crystallise.

Reactions of $[(Ph_2RP)_2Pd(CH_2SR')X]$ or $[(Ph_3P)_2Pd(CH_2SR')X]$ $Pd(CH_2SMe)X$ with Halogens

The halogen was added to a solution of equimolar $[(Ph_2RP)_2Pd(CH_2SR')X]$ (6.88 × 10⁻⁵ mol) or $[(Ph_3P)Pd(CH_2SMe)X]$ (7.8 × 10⁻⁵ mol) in CDCl₃ (0.3 ml). The bromine reactions were exothermic, the iodine ones less so. Brown precipitates formed immediately. The organosulphur products were identified by ¹H NMR spectroscopy, see Table VI.

References

- 1 K. Miki, Y. Kai, N. Yasuoka and N. Kasai, Bull. Chem. Soc. Jpn., 54, 3639 (1981).
- 2 K. Miki, Y. Kai, N. Yasuoka and N. Kasai, J. Organomet. Chem., 165, 79 (1979).
- 3 K. Miki, Y. Kai, N. Yasuoka and N. Kasai, J. Organomet. Chem., 135, 53 (1977). 4 K. Miki, G. Yoshida, Y. Kai, N. Yasuoka and N. Kasai,
- J. Organomet. Chem., 149, 195 (1978).
- 5 G. Yoshida, Y. Matsumura and R. Okawara, J. Organo-met. Chem., 92, C53 (1975).
- 6 G. Yoshida, H. Kurosawa and R. Okawara, J. Organomet. Chem., 113, 85 (1976).
- 7 H. D. McPherson and J. L. Wardell, Inorg. Chim. Acta, 35, L353 (1979).
- 8 G. Yoshida, H. Kurosawa and R. Okawara, Chem. Letts., 1387 (1977).
- 9 I. Omae, Coord. Chem. Rev., 28, 97 (1979).
- 10 W. Kuran and A. Musco, Inorg. Chim. Acta, 12, 187 (1975).
- 11 P. M. Maitlis, P. Espinet and M. J. H. Russell, 'Compounds with Palladium Carbon o-Bonds' in Comprehensive Organometallic Chemistry, ed. G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon Press, Oxford, Vol. 6, Chap. 38.4, (1982).
- 12 R. H. Rymbrandt, Tetrahedron Lett., 3553 (1971).
- 13 L. Malatesta and M.Angoletta, J. Chem. Soc., 1186 (1957).
- 14 L. Malatesta, Inorg. Chem., 3, 1062 (1964).