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Previous studies on the reduction of trivalent 
metal-polypyridine complexes of the type M”‘- 
(NNh 3+, where NN is a polypyridyl ligand (2,2’- 
bipyridine, bpy, or IJO-phenanthroline, phen; M = 
Fe, Ru, OS), have shown that these complexes are 
reduced by hydroxide ions to give the reduced prod- 
uct M1r(NN)32+ and dioxygen (or hydrogen peroxide). 
These studies have indicated the formation of a pre- 
cursor complex, (M”‘(NNhOH)2+, which has been 
suggested to be a ‘Gillard-type’ pseudo-base in which 
the OH has attacked a ring of the polypyrtdyl &and. 
This formation of pseudo-base intermediate has 
recently been questioned, and here we present an 
alternative mechanism for the reduction reaction that 
is also consistent with the origin of chemilumines- 
cence from the reduction reaction of Ru”x(bpy)33+ 
by a base. 

Introduction 

The oxidation of water is an important element 
in cyclic schemes for the conversion and storage of 
solar energy. One such simple scheme [l] (reac- 
tions 1 and 2) involves the excited state of the 
Ru”(bpy)32+ cation (bpy = 2,2’-bipyridine) 
3(MLCT)Ru(bpy)32+, as one of the principal reagents 
capable, at least thermodynamically [E“(Ru(bpy)a3+/ 
*Ru(bpy)32+) = -0.86 V [2] and E”(H20/H2) = 
-0.42 V [3], of reducing water to dihydrogen. 
Reaction 2 represents the ‘oxidation’ step of 

*Ru(bpy)a2+ + H,O - Ru(bpy)33+ t HH, + OH- 

(1) 
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R@py)33+ + OH -Ru(bpy)32+ + %02 t %H20 

(2) 
water in the scheme which encompasses the net 
photosensitized decomposition of water. The 
iron(III)- and osmium(III)-tris(bipyridine) and 
tris(phenanthroline) derivatives also undergo hydrox- 
ide reduction [4-61 and it is on this reduction 
reaction that we focus our attention in this paper. 

In an early publication, Nord and Wernberg [4] 
showed that the rate of reduction of Fe(bpy)a3+ 
and Fe(phen)33+ is first order in [complex] and in 
[OH] . The same rate law obtained for OH- reduc- 
tion of several iron(II1) and osmium(II1) bipyridyl 
and phenanthroline (phen) complexes in the [OH-] 
range 0.005-0.075 M [5]. In more concentrated 
hydroxide ion solutions (0.01 to 0.5 M), a second 
order term in [OH] also obtained for Ru(bpy)g3+: 
k 
a:? activation parameters for M rr(NN)sj+ 

= k.JOH] t ku[OH-I2 [I/ . Rate constants 
species 

are summarized in Table I [I, 51 . These data indi- 
cate that the bpy complexes are less reactive than 
the corresponding phen analogues, a problem not 
well understood [5] . The reactivity for the bpy 
complexes varies as Ru(II1) > Fe(II1) > Os(II1) and 
this accords with the variation in the respective 
formal redox potentials: E” (Ru(III)/Ru(II)), 1.26 V 
[2] ; E” (Fe(III)/Fe(II)), 0.98 V [5] and E” (Os- 
(III)/Os(II)), 0.83 V [2] . Changes in k, for the sub- 
stituted polypyridyl complexes also parallel changes 
in the redox potentials of the M(III)/M(II) couples. 

Postulated Mechanisms 

That the enthalpy of activation, AH#, for the 
reduction of Fe(bpy)3 ‘+ is less than the enthalpy, 
AH’, for the previously suggested rate-determining 
step k3, led Nord and Wernberg [5] to propose a 
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TABLE I. Rate Constants and Activation Parameters at 25 “C and cc = 1.0 M in the Hydroxide Ion Reduction of M1*1(NN)s3+.a 

Complex A@ AH# AS# k, 
(kcal/mol) (kcal/mol) (eu.) (IV- s-r) 

Fe(phen)s3+ 13.8 11.1 -10 421 

Fe(S-Mephen)s’+ 14.3 - _ 191 

Fe(5,6-Meaphen)s3+ 14.6 9.1 -19 117 

Fe(4,7-Meaphen)s3+ 15.3 10.3 -17 35 

Fe(3,4,7 ,8-Me4phen)s3+ 16 15 -3 17 

Fe(bpy)s3+ 15.8 14.9 -4 16 

Fe(4,4’-Mea bpy)33+ 17.2 13 -14 1.7 

Os(phen)s3+ 14.5 12 -8 156 

Os(S-Mephen)s’+ 14.8 8.6 -19 93 

0s(bpy)s3+ 16.5 15.6 -3 4.7 

Os(4,4’-Meabpy)s3+ 18.1 15.3 -11 0.32 

Ru(bpy)s3+ b - 15.3 +7 148’ 

*Reference 5. bReference 1. ‘k,,= 1381%2--~ s-l. 

Fe(bpy)33+ + OH- k3 ic_ Fe(bpy),‘+ + *OH (3) 
3 

precursor intermediate as the product of reaction 3, 

[Fe(bpy)aOH12+. The nature of this species is 
depicted in the following scheme; this was based 
on the available data [5] . Attack by OH-ions occurs 
on the polypyridyl rings to form a pseudo-base 
radical species; no radicals were detected in the react- 
ing solutions, but Gusenius [7] earlier reported 
unidentified radicals. 

intermediate (@I 

40; 
0-+ Hz01 

stable product @) 

Independently, Creutz and Sutin [l] also propos- 
ed analogous pseudo-base species in the OH-reduc- 
tion of Ru(bpy)33f (species 3 and 3’ in reactions 6- 
10) in which formation of the reduced product Ru- 

(bpy)a’+ was predominantly first order over the 
entire pH range, and added bromide or t-butanol 
had no effect. Thus the presence of free*OH radicals 
or O- in the reaction was ruled out. The rate-deter- 
mining step i& (low pH) depicts an intramolecular 

2+H,O 
\ 

(7) 

2 + OH - Ru”(bpy)30HZ+ + [Ru”(bpy),0H2+]’ (8) 

I+OH 3’ (9) 

Ru(bpy)30H3+ 2 Ru(bpy),O’+ t H’ (11) 

OH- 
Ru(bpy)sO*+ - slow Ru(bpy)s2+ + HOz- (12) 



Reduction of Polypyridine Complexes 

Ru(bpy),0H3+ + Ru(bpy),O’+ - 

2 Ru(bpy),‘+ + 0, + H’ (13) 

electron transfer from a bound bipyridine in Ru- 

(bpy )a 3+ to the metal centre, while direct OH- 

attack on I is rate-determining in the first-order 
kinetics at high pH [l] . The dioxygen. yield was 
a sharp function of pH, attaining its maximum value 
(0.8) at pH 9 (reactions 11-13) but here the kinetics 
were very complicated [l] . The nature of Ru(bpy),- 
02+ and how dioxygen forms in reaction 13 with 
Ru(bpy),0H3+ are not clear. It was also suggested 
that unimolecular or bimolecular decomposition of 
oxidized 3 and 3 ’ at low pH leads to degradation of 
ligand with no net water oxidation, and that at high 
pH, decomposition of Ru(bpy)a02+ also effects 
ligand degradation with formation of some peroxide. 
The latter suggestion has also been proposed in more 
recent work on dioxygen formation from the Fe- 
(bpy)a3+-OH- reaction [8]. However, the nature 
of the degraded ‘oxidized’ ligand is not known. 

Recently, Pedersen and Nord [8] have suggested 
that 0, evolution occurs only when Fe(bpy)33+ is 
partly dissociated and contains coordinated 
hydroxide. No O2 appears to form when solid 
[(bpy)3Fe](C10,)3 is dissolved in 0.1 M NaOH or 
when Os(bpy)a3+ is the reactant. Reduction of 

Pe(bpy)s3+ with OH- was faster (tm < 1 s) than 
subsequent dissociation and re-oxidation of Fe- 
(bpy)a2+ (ty2 > 15 min). They concluded that 
formation of the O-O bond involves oxygen atom 
transfer to the coordinated hydroxide and that evolu- 
tion of O2 is no evidence for the occurrence of 
reversible nucleophihc attack on the coordinated 
polypyridyl ligand (i.e. formation of species 3 and 
3’). A recent critical review [9] of the ‘evidence’ 
available on the existence of covalent hydrates and 
pseudo-bases in polypyridyl-metal complexes has 
questioned the presence of such species. 

Alternative Pathways 

We begin by considering the recent work of 
Constable and Seddon [lo] who demonstrated that 
the 3,3’-protons on the bpy ligand of Ru(bpy)32+ 
are acidic. Reaction of Ru(bpy)a2+ in (CD3)2SO 
with Na[$CD,] also in (CD3)2S0 yielded Ru(3,3’- 

2H2bpy)a ; deuterium-hydrogen exchange occurs 
at all six 3,3’-positions of bpy. No further exchange 
at any other position was observed once exchange 
at the 3,3’-positions was complete. These observa- 
tions favour a mechanism involving initial deprotona- 
tion of the complex in a conventional acid-base 
reaction. The suggestions above [ 1, 51 of nucleo- 
philic attack by OH at the C-4 or C-4’ positions [ 1] 
to give the pseudo-base species 3 or 3’ do not accord 
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with these observations, as attack at C4 or C-4’ 
would also have led to complete deuterium- hydro- 
gen exchange of the 5,5’-protons [lo] . Interestingly, 
Ru(phen)32+ and Ru(4,4’-Me2bpy)32+ undergo no 
H/D exchange under the conditions where 

Ru(bpy)a2+ undergoes exchange. Similar observations 
were reported earlier by Nord and Wernberg [5] on 
Fe(phen)32+ in NaOD solutions. The effect of 
increased charge from M(I1) to M(II1) on these bpy 
and phen complexes is not known, but it is expected 
that M(bpy)33+ and substituted derivatives show a 
greater reactivity towards deprotonation. 

On this basis, reduction of M(bpy)33+ (M = Ru, 
Fe, OS) by OH ions may occur (scheme 14) via 
initial deprotonation followed by formation of a 
bound ligand-anion radical (electron on ligand n* 
orbitals) eventually collapsing to yield the reduced 
products M(bpy)a2+ and chemiluminescence for M 
= Ru. While scheme 14 has appeal, it fails to explain 

M”( bpy) ‘*+ [titw prtits] 3 
- 

the greater reactivity of the phenanthroline 
complexes [5, 1 l] (Table I), and the existence of 
various species depending on pH [l] including 
degraded ligands [ 1, 81. It must be remembered that, 
in contrast to bpy complexes in which the 3,3’- 
positions are positions of steric strain, the phen com- 
plexes are devoid of such positions. 

We next consider a pathway involving outer-sphere 
complexes. The importance of this type of complexes 
as precursors in the reduction of Ru(NN)a3+ by 

FeQ-I-IzO)e.2+ has been noted [12] . In this regard, 
iron(polypyridine complexes are known to 
form strong, stable outer-sphere species with ClO,, 
Cl-, Br-, I-, and NO<; iodide forms the complexes 
(phen)3Fe”(II), for n = 1-4, while for the other 
anions n = l-3 [ 13, 141. Stability constants range 
from 2 M-r for fir to 70 lK4 for (34 [14], and 
appear to be dependent on ionic strength [ 151 . 
The greater charge in M”‘(NN)33+ should give 
stronger, more stable outer-sphere complexes. No 
doubt some of the unidentified substances reported 
by Creutz and Sutin [l] may be one or more of these 
complexes when the anion is OH. Our alternative 
pathway (scheme 15) for OH reduction of M(NN)a3+ 
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is based on these outer-sphere complexes with 
hydroxide, and we assume that all events take 
place amonst the species within the solvent cage { }. 
This would preclude free radicals. For scheme 1.5, we 
use a phen complex and take it that the predo- 
minant outer-sphere complex is the neutral species 
in cage {A}, reminiscent of our findings in the system 
Cr(terpy),3+ -perchlorate anion [ 161 (terpy = 
2,2’,2”-terpyridine), in which the three anions are 
wedged inside the interligand pockets. Johansson 
[14] has recognized that the phen complexes form 
stronger outer-sphere complexes with certain anions, 
and attributed this to stronger interactions between 
the anions and the n-electronic system of the phen 
ligand framework. In other words, OH- and the 
phen n-electron system form a ‘charge transfer species’ 
which in step (b) gives a reduced phen ligand and a 
coupled *OH radical still interacting with the II sys- 
tem. The species in cage {B} is analogous to the 
metal-to-ligand-charge-transfer, MLCT, excited states 
(&n*‘) of M(NN)32+ 
luminescence (d57r*’ 

complexes which give chemi- 
+ &) and the reduced product; 

in concert, *OH may also interact with OH- ions 

A 
(b) 

I M” (phen)‘+ ,.O*,OH-} 
decomposlt~on products 

dependmg on 

I 

Solui~on conditions > 

M”(phen)‘+ 3 + 02 (15) 

to give H20z- (or O- t HZ0 in cage {C}). Formation 
of dioxygen ensues [ 171 ; decomposition products 
result from OH radical interactions with the poly- 
pyridine complex in {B}. Some aspects of scheme 15 
are similar to reactions 11-13 but differ in detail. 
This pathway helps to understand the greater reacti- 
vity of M(phen)33’ over M(bpy)33+ complexes. 
Scheme 14 helps explain some recent findings [18] 
in the photochemistry of Cr(bpy)33+ in 1 .O M OH- 
aqueous media. Under certain conditions of light 

intensity, the quantum yield for the formation of 
Cr(bpy)2(OH)2’ is >l, possibly implicating a labile 
chromium(H) species. It must be noted that the dif- 
ferences in reactivity of the phen complexes over the 
bpy complexes may also be explained by noting the 
possibility that the two different complexes react 
via different pathways. 
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