Trichloromethylpentaaquochromium(III) Ion

P. ŠEVČÍK

Department of Physical Chemistry, Faculty of Sciences, Komenský University, 816 31 Bratislava, Czechoslovakia Received October 11, 1978

Dodd and Johnson [1] prepared the mono- and dihalogenomethylchromium(III) ions containing a metal-carbon σ bond in the homogeneous reactions of Cr²⁺ with methylene dihalides and by the analogous reaction of Cr²⁺ with halogeno-forms. The reduction of carbon tetrachloride with chromous perchlorate gave an unstable red solution, believed to contain the trichloromethylchromium(III) ion, which rapidly decomposed [1].

Ion exchange chromatography enabled us to separate the trichloromethylchromium(III) from the other products formed by the reaction between Cr²⁺ and CCl₄ by the following procedure. The solution of Cr(ClO₄)₂ was added under nitrogen to an ice-cooled stirred solution containing CCl₄ in H₂O-CH₃OH-HClO₄. A solution of $(0.4-1) \times 10^{-1} M \text{ Cr}^{2+}$ and $5 \times 10^{-2} M \text{ CCl}_4$ in $0.1-0.5 M \text{ HClO}_4$ and 50% (v) methanol was allowed to react under N₂ essentially to completion (2 min). The colour change from sky blue Cr^{2+} to red follows without delay. The product solution (2 ml) was diluted by ice-cooled distilled water to an ionic strength of less than 0.1 M. This solution was quantitatively transferred to a 6 ×1 cm ice-cooled Dowex 50W-X2 (200-400 mesh) cationexchange column in H⁺ form. The sample was eluted with 0.5 M or 1 M HClO₄. The first fraction eluted was green CrCl²⁺ ion. The second fraction of the chromium bands could be obtained free of CrCl²⁺ for the determination of product spectra. The fractions collected were analyzed for total chromium (after oxidation of the sample by H_2O_2 in base, CrO_4^2 -, $\epsilon_{372} = 4.82 \times 10^3 \text{ 1 mol}^{-1} \text{ cm}^{-1}$). Under optimum conditions, the amounts of chromium present in the green and red fractions were equal and accounted for all the Cr²⁺ used in the reduction.

The absorption spectrum of the $CrCCl_3^{2+}$ was measured at ~ 1 °C with a Unicam SP 1800 spectrophotometer in the visible and near-UV region. The spectrum has absorption maxima at 272 nm (ϵ 3700), 400 nm (ϵ 131) and 529 nm (ϵ 56,5) in 1 *M* HClO₄. The spectrum is similar to those of the chloro-substituted complexes reported by Dodd [1] and Espenson [2]. An analysis of the chromium products of the aquation of $CrCCl_3^{2+}$ in $1 M HClO_4$ (spectrophotometrically after ion exchange chromatography) showed the primary reaction product to be $CrCl^{2+}$. The evolved gas was identified as carbon monoxide by a GC MS Varian System MAT 111 on Porapak Q (80–100 mesh) column heated to 60 °C using helium as the carrier gas. Chloride content was measured by titration with standard AgNO₃ solutions potentiometrically. Chloroform and methane were not found as products of the aquation. The stoichiometry in 1 M HClO₄ can be represented by the equation

 $CrCCl_{3}^{2+} + H_{2}O = CrCl^{2+} + CO + 2HCl$

The kinetics of aquation of CrCCl_3^{2+} in 1 *M* HClO₄ under N₂ were followed by measuring the decrease in absorbance at 400 nm on a Unicam SP 1800 spectrophotometer. The rate constants, k_{obsd}, were evaluated from linear pseudo-first-order rate plots ($k_{obsd}^{274} = 8.6$ $\times 10^{-4} \text{ s}^{-1}$, $\Delta \text{H}^{\neq} \cong 91.1$ kJ mol⁻¹ and $\Delta \text{S}^{\neq} \cong 31$ J mol⁻¹ K⁻¹ in 1 *M* HClO₄). The presence of oxygen or added Cr²⁺ did not appreciably affect the rate of aquation. The CrCCl₃²⁺ ion is relatively labile to aquation in aqueous acid solutions compared to the trihalo analog CrCF₃²⁺ (acid dependent rate constant $k^{298} = 8.6 \times 10^{-8} M^{-1} \text{ s}^{-1}$ [3]). The same parameter for CrCH₃²⁺ is 5.2 $\times 10^{-3} M^{-1} \text{ s}^{-1}$ [4, 5].

The formation of CO in the aquation of $CrCCl_3^{3+}$ suggests dichlorocarbene as an intermediate. The difference in the rate of aquation of trichloro vs trifluoro species (*ca.* five orders of magnitude) is consistent with the breaking of the relatively weaker carbon-chlorine bond. A plausible mechanism would be the transfer of a chlorine from carbon to the chromium accompanied by dissociation of the Cr-C bond. In this case $CrCl^{2+}$ would be the main chromium product.

References

- 1 D. Dodd and M. D. Johnson, J. Chem. Soc. A, 34 (1968).
- 2 J. H. Espenson and J. P. Leslie, Inorg. Chem., 15, 1886 (1976).
- 3 S. K. Malik, W. Schmidt and L. O. Spreer, *Inorg. Chem.*, 13, 2986 (1974).
- 4 W. Schmidt, J. H. Swinehart and H. Taube, J. Am. Chem. Soc., 93, 1117 (1971).
- 5 M. Ardon, K. Woolmington and A. Pernick, *Inorg. Chem.*, 10, 2812 (1971).