Germyl(digermanyl)tetracarbonyliron: a Route to Mixed Ligand Iron Tetracarbonyls

F. S. WONG and K. M. MACKAY*

School of Science, University of Waikato, Hamilton, New Zealand

Received October 14, 1978

While many Group IV-iron triad compounds $(R_3M')_2M(CO)_4$ [M' = Si, Ge, Sn, Pb; M = Fe, Ru, Os] are known, species with two different R_3M' substituents are limited to (a) products of a few substitution reactions such as $(MeGeH_2)(MeGeHCI)Fe(CO)_4$ [1] from $(MeGeH_2)_2Fe(CO)_4$ and (b) compounds like $(Me_3Si)(Me_3Sn)Ru(CO)_4$ [2] derived from the $R_3M'Ru(CO)_4$ anion formed by cleaving the dimer. This latter route is not available for iron compounds.

In our study of the exchange of metal carbonyl moieties on germanes [3], we found that a 1:1 reaction between $Mn(CO)_5$ and $(GeH_3)_2Fe(CO)_4$ gave a good yield of $GeH_3Mn(CO)_5$ implying the nearquantitative formation of $(GeH_3)Fe(CO)_4^-$. This anion provides a new route to iron tetracarbonyl derivatives with two different ligands.

Experimental

 $(Ge_2H_5)_2Fe(CO)_4$ [4] (165.5 mg, 0.349 mmol) was condensed onto an ether solution of anion formed from $Mn_2(CO)_{10}$ (71.8 mg, 0.184 mmol) by the action of excess sodium amalgam. After 30 minutes, fractionation yielded $Ge_2H_5Mn(CO)_5$ (96.2 mg, 0.279 mmol, 79.9%) [5]. To the residue in ether was added excess GeH_3Br, the mixture was shaken for 30 minutes and then fractionated. At -23 °C there was recovered germyl(digermanyl)tetracarbonyliron, (GeH_3)(Ge_2H_5)Fe(CO)_4. This is a colourless liquid, just volatile in a vacuum line, which is stable indefinitely in the dark. It slowly turns yellow in artificial light and a solution in cyclohexane was completely decomposed after 30 minutes in strong sunlight.

The compound was identified spectroscopically. The parent ion envelope in the mass spectrum spans m/e = 404-385 with $(P-H)^*$ about 20% of the intensity of P^{*} (C₄H₈O₄FeⁿGe₃ = 408 for n = 76 and 386 for n = 70). Principal fragment families were Ge₃H_xFe(CO)^{*}_n (carrying 36% of the ion current and with n = 4 $\leq 3 < 1 < 2 < 0$ in intensity), Ge₂H_yFe-(CO)^{*}_n (32% ion current, n = 4 $\leq 2 < 3 < 1 < 0$) and

GeH_zFe(CO)⁺_n (19% ion current, n = 4 < 2 < 1 < 3 < 0). Minor contributors were HFe(CO)⁺_n, Fe(CO)⁺_n, Ge₃H⁺_x, Ge₂H⁺_y and GeH⁺_z (n = 0 to 4, x = 0 to 8, y = 0 to 5, z = 0 to 3).

The ¹H n.m.r. spectrum showed strongly overlapping signals which could be analysed as a singlet (τ GeH₃Fe = 6.52) superimposed on an A₃B₂ pattern (τ GeH₃ = 6.60, τ GeH₂ = 6.55, ³J = 4.0 Hz) by comparison with (GeH₃)₂Fe(CO)₄ (τ GeH₃ = 6.50 [6]) and (Ge₂H₅)₂Fe(CO)₄ (τ GeH₃ = 6.53, τ GeH₂ = 6.48, ³J = 4.3 Hz [4]).

The Table shows the most important vibrations, which indicate the *cis* configuration.

TABLE. Principal Vibrations of $(GeH_3)(Ge_2H_5)Fe(CO)_4$ (cm⁻¹).*

2090 s VCO	679 m	GeH ₂ wag
2055 m <i>v</i> GeH	617 s	δFeCO
2023 vs VCO	434 s,p	ν FeC
2007 vvs VCO	268 m,p	νGeGe
870 w	223 vs,p	<i>v</i> GeFe ^c
860 w asym. Gen _x bends	202 s,p	ν GeFe ^d
813 m δGeH_3^a	104 s,dp	skeletal bends
$790 \text{ m} \delta \text{GeH}_3^{\mathbf{b}}$		
•		

*Values above 450 cm⁻¹ from infrared spectrum of cyclohexane solution: those below from Raman spectrum of neat liquid.

^aSymmetric bend of GeH₃ group on Fe. ^bSymmetric bend of GeH₃ group on GeH₂. ^cOf H₃Ge–Fe, compare 229 vs,p and 216 m,dp for (GeH₃)₂Fe(CO)₄ [6]. ^dOf H₅Ge₂–Fe, compare 211 vs,p and 198 m,dp for (Ge₂H₅)₂Fe(CO)₄ [4].

In similar reactions, preliminary evidence was found indicating the formation of $(GeH_3)(SiH_3)$ -Fe(CO)₄ starting either from $(GeH_3)_2$ Fe(CO)₄ or from $(SiH_3)_2$ Fe(CO)₄. The silyl-germyl species was accompanied, and appeared to convert into, a second component which could not be separated but the weak parent ion envelope in the mass spectrum at m/e = 269-277 (C₄H₆O₄SiGeFe = 272-280 with (P-3H)⁺ predominating), proton resonances with τ SiH₃ = 6.35, τ GeH₃ = 6.63, and infrared bands at 2099 m, 2041 vs, 2019 vs (ν CO), 958 w (δ SiH₃) and 815 m (δ GeH₃) are all compatible with (GeH₃)(SiH₃)Fe-(CO)₄.

Discussion

Germyl(digermanyl)tetracarbonyliron is intermediate in volatility, stability, and spectroscopic properties between di(germyl)- and bis(digermanyl)tetracarbonyliron. For example, the strong symmetric GeH₃—Fe deformation is at the average of the in- and out-of-phase symmetric deformations of

^{*}Author to whom correspondence should be addressed.

 $(GeH_3)_2Fe(CO)_4$ [6] at 835 and 809 cm⁻¹. Similarly, the GeH₂ wag at 679 cm⁻¹ compares with 692 and 662 cm⁻¹ found [4] for the wagging modes of $(Ge_2H_5)_2Fe(CO)_4$. The base peak in the mass spectrum is $Ge_3H_xFe^+$, compare with $Ge_2H_xFe^+$ as the base peak for $(Ge_4H_3)_2Fe(CO)_4$ and with $Ge_4H_xFe^+$ for $(Ge_2H_5)_2Fe(CO)_4$.

The preparation of $(GeH_3)(Ge_2H_5)Fe(CO)_4$ and the indication of $(GeH_3)(SiH_3)Fe(CO)_4$ validates this route to unsymmetrically substituted tetracarbonyliron compounds. Such species will be of value in elucidating condensations to higher molecular weight species [1] such as $[R_2GeFe(CO)_4]_2$.

References

- 1 A. Bonny and K. M. Mackay, J. Chem. Soc. Dalton, 506 (1978).
- 2 S. A. R. Knox and F. G. A. Stone, J. Chem. Soc. A, 3147 (1970), 2559 (1969).
- 3 R. Gerlach, B. W. L. Graham and K. M. Mackay, J. Organomet. Chem., 118, C23 (1976).
- 4 F. S. Wong, D. Phil. Thesis, University of Waikato (1978).
- 5 S. R. Stobart, Chem. Comm., 999 (1970).
- 6 S. R. Stobart, J. Chem. Soc. Dalton, 2442 (1972).