Electron Transfer across a Coordinated Azide Group Positioned *trans* to Secondary Nitrogen and Thioether Donors

JAY H. WORRELL*, ROGER GODDARD and THOMAS JACKMAN

Chemistry Department, University of South Florida, Tampa, Florida 33620, U.S.A.

Received November 3, 1978

10⁴ [Co(III)]

М

3.60

1.80

Recent work in our laboratory has centered on the design and synthesis of ligands which when coordinated octahedrally to metal ions, selectively place thioether or secondary nitrogen donors *trans* to a single site suitable for substitution and/or reaction. Two such new ligands are Q and QS [1]. Because of

Q:
$$NH_2$$
- CH_2CH_2 - S - CH_2CH_2 - N - CH_2CH_2 - S - CH_2CH_2 - NH_2
 CH_3

QS:
$$NH_2$$
- CH_2CH_2 - S - CH_2CH_2 - S - CH_2CH_2 - S - CH_2CH_2 - NH_2

their design and in consideration of stereochemical requirements for coordinated R-S-R and $N-CH_3$ donors, the number of possible cobalt(III) geometric isomers is restricted to the $\alpha\alpha$ topology [2-4]:

*Author to whom correspondence should be addressed.

TABLE I. Kinetic Data for the Reduction of $CoQN_3^{2+}$ by Iron(II).^a

м

[Fe(II)]

0.005

0.010

0.015 0.020

0.025

0.030

0.010

0.010

0.010 0.010

0.010

0.010

0.010

0.010

0.010

 $^{\mathbf{a}}\Sigma[\text{CIO}_{4}] = 1.00 M$, maintained with LiClO₄.

spectrophotometrically (Cary 14) at the conditions given using standard techniques. All solutions were prepared and standardized as reported earlier [5]. The new complexes were prepared from [Co(Q)Cl]-

> k_t $M^{-1} s^{-1}$

1.31

1.37 1.34

1.34

1.36

1.33

0.663

2.39

1.36

1.37

1.37 1.35

1.33

1.36

1.40

1.35 ± 0.02 std. dev.

Temp.

25.0

25.0

25.0

25.0

25.0

25.0

17.3

32.9

25.0

25.0

25.0

25.0

25.0

25.0

25.0

AVE =

°C

This report presents data for the iron(II) reduction of

these two complexes, demonstrating a marked rate enhancement when $N-CH_3$ or R-S-R groups are

selectively positioned trans to the azide bridge and

all other non-bridging ligand factors are held

constant.

 $[H_3O^+]$

М

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.20

0.05

0.10

0.20

0.40

0.60

0.80

0.20

L71

10 ⁴ [Co(III)] M	[Fe(II)] <i>M</i>	[H ₃ O ⁺] <i>M</i>	Temp. °C	$\stackrel{k_t}{M^{-1}} s^{-1}$
1.6	0.0108	0.50	25.0	0.925
	0.0146	0.50	25.0	0.879
	0.0183	0.50	25.0	0.928
	0.0222	0.50	25.0	0.914
	0.0146	0.10	25.0	0.898
	0.0146	0.30	25.0	0.910
0.80	0.0146	0.50	25.0	0.932
	0.0146	0.70	25.0	0.919
	0.0146	0.90	25.0	0.908
	0.0146	0.50	18.1	0.504
	0.0146	0.50	18.4	0.512
	0.0146	0.50	33.2	1.59
	0.0146	0.50	33.6	1.70
3.2	0.0146	0.50	25.0	0.930
			AVE =	0.914 ± 0.016 std. dev

TABLE II. Kinetic Data for the Reduction of Co(QS)N₃²⁺ by Iron(II).^a

^a Σ [ClO₄] = 1.0 *M*, maintained with LiClO₄.

 $(ClO_4)_2$ and $[Co(QS)Cl](ClO_4)_2$ by treatment with aqueous NaN₃ followed by recrystallization from aqueous NaClO₄. Anal. Calcd. for $[Co(Q)N_3]$ - $(ClO_4)_2$: C, 20.1; H, 4.32; N, 15.6. Found: C, 20.0; H, 4.26; N, 15.6% ($\lambda_{max} = 547 \text{ nm}, \epsilon = 778$). Anal. Calcd. for $[Co(QS)N_3](ClO_4)_2$: C, 17.8; H, 3.73; N, 12.9. Found: C, 17.9; H, 3.88; N, 12.7% ($\lambda_{max} = 537 \text{ nm}, \epsilon = 1150$).

Results and Discussion

.....

Tables I and II present the Co(III), Fe(II), H₃O⁺ and temperature dependence data for the reduction of Co(Q)N₃²⁺ and Co(QS)N₃²⁺ respectively. The reduction path is acid independent for both complexes over the range 0.05 $M < H_3O^+ > 0.80 M$, and first order in Co(III) and Fe(II). The data are consistent with a mixed second-order rate law:

$$\frac{-d[Co(III)]}{dt} = k_t [Co(III)] [Fe(II)]$$

Reduction activation parameters ΔH^{\pm} and ΔS^{\pm} were determined to be +14.1 ± 0.2 kcal/mol and -10.8 ± 0.8 eu for Co(Q)N₃⁺ and +13.2 ± 0.2 kcal/mol and -14.7 ± 0.8 eu for Co(QS)N₃⁺.

Table III summarizes the iron(II) reduction rates for several cobalt(III) azide complexes. In earlier work [6], Haim and co-workers attributed the particular reactivity trends in k_t simply to the circumstance that the d_{z^2} orbital that accepts the electron is made more available by simultaneously

 TABLE III. Fe(II) Reduction Rates for Several Azido Cobalt-(III) Complexes.^a

$k_{t}, M^{-1} s^{-1}$	Ref.
0.0087	6
1.35	this work
0.914	this work
0.145 ^b	8
0.185	6
0.355	6
	$\begin{array}{c} \mathbf{k_{t}}, M^{-1} \ \mathbf{s^{-1}} \\ \hline 0.0087 \\ 1.35 \\ 0.914 \\ 0.145^{\mathbf{b}} \\ 0.185 \\ 0.355 \end{array}$

^a25 °C, Σ [ClO₄] = 1.0 *M*. ^bNSSN = H₂N-CH₂CH₂-S-CH₂CH₂-S-CH₂CH₂-NH₂.

removing the bridging ligand and the donor group *trans* to it [7]. Increased chelation in going from NH_3 's, to en's, to trien, to tetren reduces k_t significantly [8,9]. Presumably increased chelation reduces the ability of a *trans* donor to stretch along the axis of inner-sphere interactions and thus we would expect complexes derived from a pentadentate ligand to exhibit a further reduction in k_t .

In this work, the presence of R-S-R donors both cis-(CO(Q)N₃²⁺) and cis and trans-(Co(QS)N₃²⁺) enhance k_t dramatically even with increased chelation when compared to the reduction rate for Co-(NH₃)₅N₃²⁺. Other specific enhancement factors may also be of importance such as solvation, low lying electronic states due to R-S-R, ease of Co-N₃ bond breakage and π/σ bonding features. The similarity of thermodynamic activation parameters indicate a

common activation step in the iron(II) reduction of both $Co(Q)N_3^{2^+}$ and $Co(QS)N_3^{2^+}$. The greater k_t observed for the former may be due to the $CH_3-N'_{A}$ group disruption of the primary solvation sphere, thus facilitating elongation along the innersphere reduction axis.

References

- 1 Q = 7-methyl-4,10-dithia-1,7,13-triazatridecane; QS = 1,11-diamino-3,6,9-trithiaundecane.
- 2 J. H. Worrell and T. A. Jackman, Inorg. Chem., 17, 3358 (1978).

- 3 J. H. Worrell and R. A. Goddard, J. Coord. Chem., 9, 000 (1979). In press.
- J. I. Legg and D. W. Cooke, *Inorg. Chem.*, 4, 1576 (1965);
 J. H. Worrell and D. H. Busch, *ibid.*, 8, 1563 (1969); *ibid.*, 8, 1572 (1969).
- 5 J. H. Worrell and T. A. Jackman, J. Am. Chem. Soc., 93, 1044 (1971).
- 6 A. Haim, *ibid.*, 85, 1016 (1963); *ibid.*, 86, 2352 (1964);
 P. Benson and A. Haim, *ibid.*, 87, 3826 (1965).
- 7 H. Taube, Can. J. Chem., 27, 129 (1959).
- 8 J. H. Worrell, R. A. Goddard, E. M. Gupton and T. A. Jackman, *Inorg. Chem.*, 11, 2734 (1972); J. H. Worrell, R. A. Goddard and R. Blanco, *ibid.*, 17, 3308 (1978).
- 9 Y. Kurimura and K. Ohashi, Bull. Chem. Soc. Japan, 44, 1797 (1971).