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ESR spectral measurements were cam’ed out for 
several low-spin s&-coordinate cobalt(H) complexes. 
Tetragonally compressed octahedral structures 
were assumed for some bis(terdentate) and tris(biden- 
tate) type complexes studied here. 

Introduction 

Octahedral complexes of copper(H) (3d9) and low- 
spin cobalt(H) (3d’) are generally distorted from 
regular octahedron due to the Jahn-Teller effect. In 
almost all cases, copper(I1) complexes assume tetra- 
gonally elongated octahedron with a small ortho- 
rhombic component superimposed [2, 31. In some 
cases, however, tetragonally compressed copper(I1) 
complexes exist. For example, copper(I1) ion has 
such au environment when it is doped in a host lattice 
composed of complex ions with a compressed octa- 
hedral geometry [4, 51 such as [CUCL+(NH~)~]*- 
[6]. Recently, ESR and crystal structural analysis 
of [Cu(terp)] X2 and [Co(terp)*] X2 (terp = terpyri- 
dine, X = halide ions such as Cl-, and Br-, etc.) has 
shown that the rigid structure of the terdentate 
terpyridine induces a tetragonal compression of 
the MN6 polyhedron [7-91. 

For low-spin cobalt(I1) complexes, however, 
only few ESR studies have been published concern- 
ing the distortion of octahedral coordination [lo, 
111. In this study, in order to see the coordination 
geometry we have measured the ESR and electronic 
spectra of three different types of six-coordinated 
low-spin cobalt(I1) complexes, such as (A): [Co- 
(dmg)*B*] (Hdmg = dimethylglyoxime, B = pyridine 
or imidazole), (B): [Co(terdentate ligand)*] I?, and 
(C): [Co&dentate),] (PF,)*. Of these complexes, it 
was found that B and C types are of compressed octa- 
hedral coordination. 

Experimental 

The six-coordinated cobalt(I1) complexes used in 
this paper are classified into three types, (A), (B) 
and (C) (cf: Fig. 1). 

(A) (B) (Cl 

Fig. 1. The cobalt(I1) complexes *u+sed in this study. (A): 
[Co(drr%$Bs]; (B): [Co(dhap)s] (R = N2H;2) and [Co- 
(dbap)z]* (R = CH2CeH4); (C): [Co(bmi)s] . 

TABLE I. Abbreviations of the Ligands Cited in This Paper. 

Abbreviation 

PY pyridine 
Hdmg dimethylglyoxime 
im imidazole 

dhap 2,6diacetylpyridinebishydrazone 
dbap 2,6diacetylpyridinebisbenzylimine 
bmi diacetylbismethylimine 
terp terpyridine 

(A): [Co(dmg),B2] ; Hdmg = dimethylglyoxime, B = 
pyridine and imidazole 

The structures of these complexes are shown in 
Fig. 1. For the ESR measurements, these cobalt(I1) 
complexes were diluted in the corresponding dia- 
magnetic iron(I1) complexes [ 121 . 

(B): Bis(terdentate) Type Complexes, [Co(dhap)2] I2 
and [Co(dbap)2 ] I2 (cf. Fig. I and Table I) 

These ligands, dhap and dbap, are illustrated in 
Fig. 1 and were obtained from the reaction mixture 
of 2,6diacetylpyridine and hydrazine or benzyl- 
amine, according to Curry et al. [13]. We could not 
dilute these cobalt(I1) complexes into the analogous 
iron(I1) complexes. Therefore, ESR measurements 
of these complexes were carried out for DMF frozen 
solutions. 
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(C): Tris(bidentate) Type Complex, [Co(bmi)3] 
P&)2 

The l&and, bmi, represents Schiff base derived 
from diacetyl and methylamine [ 141. ESR measure- 
ment was performed for the diluted sample in the 
corresponding iron(R) complex. 

ESR spectra of these complexes were measured 
with a JEOL ESR apparatus model MEX3X at liquid 
nitrogen temperature. Electronic reflectance spectra 
were obtained with a Shimadzu multipurpose model 
MPS-5000 at room temperature. 

Results and Discussion 

From the studies of magnetic properties it was 
shown that [Co(dhap)2] I?, [Co(dbap)?] I2 and 
[Co(bmi)s] I2 are in spin-equilibrium of high-spin and 
lowspin at room temperature and are almost of low- 
spin type at the liquid nitrogen temperature [ 14-161 . 

In distorted octahedral low-spin cobalt(B) com- 
plexes, it is apparent that an unpaired electron resides 
in d,z or d,+,, 1 orbital. For these cases Maki et al. 
have given the following equations, taking spin-orbit 
coupling into consideration [ 171 : 

Fig. 2. ESR spectra of (A) type complexes (77 K). 1: [Co- 
(dmg12(im)sl; 2: [Co(dm&W)zl. 

For (dX+.2)2(dZz)’ configuration 

gll = 2.0 

gl =2-6ar 

c (1) 
at = 

A(z2 - xz,yz) (2) 

For (dZ2)2(dxz_;z)1 configuration 

gll = 2 - 8br br = 
5 

A(1x2 - Y’] - xy) 
(3) 

gl = 2 - 2b2 
5 

b2 = A({x” - y2} - xz) 
(4) 

where { is the one-electron spin-orbit coupling cons- 
tant of cobalt atom, and A(z2 - xz), etc. represent 
the energy separation between (dx~_yZ)2(dz~)1 and 
(d,2_~~)2(dxZ)r, etc. 

In Fig. 2, the ESR spectra of (A) type complexes 
diluted in homologous iron complexes are shown. 
These spectra are much more resolved compared with 
those in a frozen solution previously reported [ 181. 
The spectrum of [Co(dmg)2(py)2] is of a typical 
axial symmetry, and similar to spectra of cobalt(B) 
complexes whose ground state electronic configura- 
tion was established to be (dXzyz)2(dZz)’ [19-211. 
The superhyperfine structure is observed in the gll 
region. Five superhyperfine components for each 
59Co hyperfine component clearly indicate the axial 
coordination of pyridine molecules. The g values 

(Pll = 2.02, < g1 - 2.2) well conform to equations 
(1) and (2) but not to equations (3) and (4) which 
predict gll > gl > 2.0. Although A(z2 - xz) is not 

estimated experimentally, the value A(z2 - xz) 
= 16000 cm-’ calculated from gl = 2.2 and { = -510 
cm-’ according to (2) appears to be reasonable. 

As seen in Fig. 2, [Co(dmg)2(im)2] shows a little 
more complicated spectrum. This may be due to the 
fact that imidazole is stronger ligand than pyridine, 
so that the ligand field around cobalt atom is more 
isotropic for. [Co(dmg)2(im)2] than for [Co(dmg)2- 
(py),] . However, the ground state configuration of 
this complex should also be (dXz_,.z)2(dZz)1,, because 
the general spectral pattern resembles that of [Co- 

CbMvM , h w ereas it is entirely different from 
those of (B) and (C) type complexes whose ground 
state configuration was assigned to the (dZ2)‘- 
(d,z; 2)’ ground state (vide infia). 

As obviously seen in Fig. 3, the ESR spectra of (B) 
type complexes are quite different from those of (A) 
type complexes. The relation gll > gl > 2.0 is 
obviously seen for these spectra (gr = 2.35, and gl = 
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Fig. 3. ESR spectra of (B) type complexes (77 K). 1: [Co- 
@hap)2 II2 ; 2: [CoGSap) 112. 

2.12 in the case of [Co(dbap),] 12). This is compa- 
tible with the theoretical prediction (equations (3) 
and (4)) based on the (dzl)2(d,2_,,~)1 electronic 
configuration. Therefore, these complexes are of 
compressed octahedral coordination. It is to be noted 
that this is the first example of such symmetry for 
low-spin cobalt(I1) complexes determined by use of 
ESR spectra. In order to examine the above conclu- 
sion, we have measured the ESR spectrum of [Cu- 
(dhap),] Cl2 in a DMF frozen solution (cf: Fig. 4). 
The spectrum obtained is similar to that of [Cu- 
(terp)2] (NO,), [7] , showing one gcomponent at 

g - 2.0 (g3 = 2.02) which is indicative of (d,z)‘, 
ground state [4, 6, 221. This shows that the coordi- 

DPPH 

1 

Fig. 5. ESR spectrum of [Co(bmi)s] (PF& (77 K). 
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Fig. 6. Reflectance spectra of the cobalt(H) complexes 1: 

ICo(dhap)z 112; 2: [Co@mi)31 (PF&. 

Fig. 4. ESR spectrum of [Cu(dhap)2] Cl2 (77 K). 
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d,z.y2 --. . . % ,*’ _- $2 
..__,’ 

/-\ , 
/’ 

‘, 
‘\ , 

d2z -’ .*- d,2_,2 

d,a and d,l; 2 orbital in [Co@mi),] (PF6)2 than that 
in [Co(dhap)2] Iz. 

du - 
d YZ ------= 

dw i- 

t29 d - xz 

-----~ dYZ 
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