Investigation on Low-spin Cobalt(I1) Complexes. X. [1 **] An ESR Study on Six-coordinate Complexes**

YUZO NISHIDA, KAZUHIKO IDA and SIGEO KIDA

Department of Chemistry, Faculty of Science, Kyushu University 33, Fukuoka 812, Japan **Received May 5,1979**

ESR spectral measurements were cam'ed out for several low-spin six-coordinate cobalt(II) complexes. *Tetragonally compressed octahedral structures were assumed for some bis(terdentate) and tris(bidentate) type complexes studied here.*

Introduction

Octahedral complexes of copper(II) $(3d^9)$ and lowspin cobalt(II) $(3d^7)$ are generally distorted from regular octahedron due to the Jahn-Teller effect. In almost all cases, copper(I1) complexes assume tetragonally elongated octahedron with a small orthorhombic component superimposed [2, 31. In some cases, however, tetragonally compressed copper(I1) complexes exist. For example, copper(I1) ion has such an environment when it is doped in a host lattice composed of complex ions with a compressed octahedral geometry [4, 5] such as $[CuCl_4(NH_3)_2]^{2-}$ [6]. Recently, ESR and crystal structural analysis of $\left[\text{Cu(terp)}\right] X_2$ and $\left[\text{Co(terp)}_2\right] X_2$ (terp = terpyridine, $X =$ halide ions such as Cl^- , and Br^- , etc.) has shown that the rigid structure of the terdentate terpyridine induces a tetragonal compression of the MN₆ polyhedron $[7-9]$.

For low-spin cobalt(I1) complexes, however, only few ESR studies have been published concerning the distortion of octahedral coordination [10, 111. In this study, in order to see the coordination geometry we have measured the ESR and electronic spectra of three different types of six-coordinated low-spin cobalt(I1) complexes, such as (A): [Co- $(dmg)_2B_2$] (Hdmg = dimethylglyoxime, B = pyridine or imidazole), (B): $[Co(terdentate ligand)_2] I_2$, and (C): $[Co(bidentate)_3] (PF_6)_2$. Of these complexes, it was found that B and C types are of compressed octahedral coordination.

Experimental

The six-coordinated cobalt(I1) complexes used in this paper are classified into three types, (A) , (B) and (C) (cf. Fig. 1).

g. I. The cobalt(II) complexes used in this study. (A): $[\text{C}_0(\text{dmg})_2]$; (B): $[\text{C}_0(\text{dhap})_2]^2$ ⁺ (R = NH₂) and [Co- $(\text{dbap})_2$]²⁺ (R = CH₂-C₆H₄); (C): [Co(bmi)₃]²

TABLE I. Abbreviations of the Ligands Cited in This Paper.

Abbreviation	
pу	pyridine
Hdmg	dimethylglyoxime
im	imidazole
dhap	2.6-diacetylpyridinebishydrazone
dbap	2,6-diacetylpyridinebisbenzylimine
bmi	diacetylbismethylimine
terp	terpyridine

 (A) : $[Co(dmg)_{2}B_{2}]$; $Hdmg = dimethylglyoxime$, $B =$ *pyridine and imidazole*

The structures of these complexes are shown in Fig. 1. For the ESR measurements, these cobalt(I1) complexes were diluted in the corresponding diamagnetic iron(II) complexes $[12]$.

(B): Bis(terdentate) Type Complexes, $\lceil Co(dhap)_2 \rceil I_2$ *and [Co(dbap)2] I2* (cf. *Fig. I and Table I)*

These ligands, dhap and dbap, are illustrated in Fig. 1 and were obtained from the reaction mixture of 2,6diacetylpyridine and hydrazine or benzylamine, according to Curry *et al.* [13]. We could not dilute these cobalt(I1) complexes into the analogous iron(I1) complexes. Therefore, ESR measurements of these complexes were carried out for DMF frozen solutions.

(C): Tris(bidentate) Type Complex, [Co(bmi)3] $(PF_6)_2$

The ligand, bmi, represents Schiff base derived from diacetyl and methylamine [14]. ESR measurement was performed for the diluted sample in the $corresponding iron(II) complex.$

ESR spectra of these complexes were measured with a JEOL ESR apparatus model MEX-3X at liquid nitrogen temperature. Electronic reflectance spectra were obtained with a Shimadzu multipurpose model MPS-5000 at room temperature.

Results and Discussion

From the studies of magnetic properties it was shown that $[Co(dhap)_2]I_2$, $[Co(dbap)_2]I_2$ and $[Co(bmi)₃] I₂$ are in spin-equilibrium of high-spin and lowspin at room temperature and are almost of lowspin type at the liquid nitrogen temperature $[14-16]$.

In distorted octahedral low-spin cobalt(II) complexes, it is apparent that an unpaired electron resides in d_{z^2} or $d_{x^2-y^2}$ orbital. For these cases Maki *et al.* have given the following equations, taking spin-orbit coupling into consideration $[17]$:

or
$$
(d_{x^2-y^2})^2 (d_{z^2})^1
$$
 configuration
\n $g_{\parallel} = 2.0$
\n $g_{\perp} = 2 - 6a_1$
\n(1)
\n $a_1 = \frac{\zeta}{\Delta(z^2 - xz, yz)}$ (2)

For $(d_{z^2})^2(d_{x^2-y^2})^1$ configuration

$$
B_{\parallel} = 2 - 8b_1 \qquad b_1 = \frac{\zeta}{\Delta(\{x^2 - y^2\} - xy)} \tag{3}
$$

 $(dmg)_{2}(im)_{2}; 2: [Co(dmg)_{2}(py)_{2}].$

$$
g_1 = 2 - 2b_2 \qquad \qquad b_2 = \frac{5}{\Delta(\{x^2 - y^2\} - xz)} \tag{4}
$$

where ζ is the one-electron spin-orbit coupling constant of cobalt atom, and $\Delta(z^2 - xz)$, *etc.* represent the energy separation between $(d_{x^2-y^2})^2(d_{z^2})^1$ and $(d_{x^2-y^2})^2(d_{xz})^1$, *etc.*

In Fig. 2, the ESR spectra of (A) type complexes diluted in homologous iron (II) complexes are shown. These spectra are much more resolved compared with those in a frozen solution previously reported [18]. The spectrum of $[Co(dmg)₂(py)₂]$ is of a typical axial symmetry, and similar to spectra of cobalt(II) complexes whose ground state electronic configuration was established to be $(d_{x^2-y^2})^2(d_{z^2})^1$ [19-21]. The superhyperfine structure is observed in the g_{\parallel} region. Five superhyperfine components for each 59Co hyperfine component clearly indicate the axial coordination of pyridine molecules. The g values $(g_{\parallel} = 2.02, \langle g_{\parallel} \rangle \sim 2.2)$ well conform to equations (1) and (2), but not to equations (3) and (4) which predict $g_{\parallel} > g_{\perp} > 2.0$. Although $\Delta(z^2 - xz)$ is not

estimated experimentally, the value $\Delta(z^2 - xz)$ = 16000 cm⁻¹ calculated from $g_1 = 2.2$ and $\zeta = -510$ cm^{-1} according to (2) appears to be reasonable.

As seen in Fig. 2, $[Co(dmg)₂(im)₂]$ shows a little more complicated spectrum. This may be due to the fact that imidazole is stronger ligand than pyridine, so that the ligand field around cobalt atom is more isotropic for $[Co(dmg)₂(im)₂]$ than for $[Co(dmg)₂]$. $(py)_2$. However, the ground state configuration of this complex should also be $(d_{x^2-y^2})^2(d_{z^2})^1$, because the general spectral pattern resembles that of [Co- $(dmg)₂(py)₂$, whereas it is entirely different from those of (B) and (C) type complexes whose ground state configuration was assigned to the $(d_{z^2})^2$ - $(d_{x^2-y^2})^1$ ground state *(vide infra)*.

As obviously seen in Fig. 3, the ESR spectra of (B) type complexes are quite different from those of (A) type complexes. The relation $g_{\parallel} > g_{\perp} > 2.0$ is obviously seen for these spectra (g_{\parallel} = 2.35, and g_{\parallel} =

 \overline{a} . ESR spectra of (B) type compared to \overline{b}

 2.12 in the case of $\frac{12}{3}$. This is compact of $\frac{12}{3}$. ϵ in the case of [Co(doap)₂] ϵ ₂). This is compatible with the theoretical prediction (equations (3) and (4)) based on the $(d_{z^2})^2(d_{x^2-y^2})^T$ electronic configuration. Therefore, these complexes are of compressed octahedral coordination. It is to be noted that this is the first example of such symmetry for low-spin cobalt(II) complexes determined by use of ESR spectra. In order to examine the above conclusion, we have measured the ESR spectrum of [Cu- $(dhap)_2|Cl_2$ in a DMF frozen solution (cf. Fig. 4). The spectrum obtained is similar to that of [Cu- g $\text{g$ \sim 2.0 (g₃ – 2.02) which is indicative of $(\mathbf{u_z}^2)$.

Fig. 5. ESR spectrum of $[Co(bmi)_3]$ (PF₆)₂ (77 K).

 U , Koheemse speem of the cool

Fig. 4. ESR spectrum of $[Cu(dhap)_2]Cl_2$ (77 K).

Fig. 7. Splitting scheme of d-orbitals in the distorted octahedron. 1: tetragonally compressed distortion. 2: tetragonally elongated distortion.

nation geometry of $[Co(dhap)_2]^2$ ⁺ and $[Cu(dhap)_2]^2$ ⁺ complexes are both compressed octahedron.

In Fig. 5, the ESR spectrum of $[Co(bmi)_3] (PF_6)_2$ is shown. This is entirely different from those of (A) type complexes, but resembles those of(B) type complexes, and hence $(d_{z^2})^2(d_{x^2-y^2})^1$ configuration is expected for this complex. In Fig. 6, the electronic reflectance spectra of $[Co(dhap)_2]I_2$ and $[Co(bmi)_3]$ $(PF_6)_2$ are shown. Three absorption bands are observed for $[Co(dhap)_2] I_2$. These bands are assigned tentatively to the electronic transitions, $d_{x^2-y^2} \rightarrow$ d_{xy} , d_{xy} , d_{yy} , d_{yy} \rightarrow $d_{x^2-y^2}$ and d_{yz} , d_{yz} , d_{yy} \rightarrow d_{z^2} $\frac{1}{2}$ the bands at 8000, 16000 and 21000 cm⁻¹ respectively. Above assignments may be supported by the spectral study on $\left[\text{Cu}(\text{terp})_2\right](\text{NO}_3)_2$ complex. For the latter complexes, two bands at 6550 nd 14500 cm^{-1} were assigned to the d_{ran}, \rightarrow d_{12} and d_{12} , d_{12} , d_{12} + d_{2} , respectively [7] (cf. Fig. 7).

The spectrum of $[Co(bmi)_3] (PF_6)_2$ shows no band in the near-infrared region $(5 \sim 10 \times 10^3 \text{ cm}^{-1})$, and the band in the visible region is higher in energy than that of $[Co(dhap)_2]I_2$. This can be interpreted in terms of the smaller energy separation between

 d_{z^2} and $d_{x^2-y^2}$ orbital in $[Co(bmi)_3]$ (PF₆)₂ than that in $[Co(dhap)₂] I₂$.

References

- 1 Part IX, Y. Nishida, K. Hayashida, A. Sumita and S. Kida,Inorg. *Chim. Acta, 31,* 19 (1978).
- $\overline{2}$ *2 C.* Friebel and D. Reinen, Z. *anorg. Allg. Chem., 407,* 193 (1974).
- \mathbf{a} *3 C.* Friebel, V. Propach and D. Reinen, Z. *Naturforsch., B31*, 1574 (1976).
- *4 J. A. C. Van Ooijen, P. J. Van Der Put and J. Reedijk, Chem. Phys. Lett.: 51, 380 (1977).* 5 P. A. Narayana and K. V. L. N. Sastry, J. Chem. *Phys.,*
- *57, 3266* (1972).
- *6* P. A. Narayana and K. V. L. N. Sastry, *J. Chem. Phys., 58, 4381* (1973).
- *7* W. Henke and D. Reinen, Z. *anorg. Allg. Chem., 436,* 187 7 (1977).
- *8* R. Allman, W. Henke and D. Reinen, *Inorg. Chem., 17, 378* (1978).
- 9 E. N. Maslen, C. L. Raston and A. H. White, *J. Chem.* $\mathbf Q$ *Sot. Dalton, 1803* (1974).
- 10 H. Elliott, B. J. Hathaway and R. C. Slade,Inorg. *Chem., 5, 669* (1966).
- 11 J. A. Bertrand, D. A. Carpenter and A. R. Kalyyanaraman,Inorg. *Chim. Acta, 5, 113* (1971).
- 12 N. Sanders and P. Day, J. *Chem. Sot. A, 2303* (1969) and references therein.
- 1 D. Curry, M. A. Robinson and D. H. Busch, *Inorg. Chem., 6, 1570* (1967).
- 14 P. E. Figgins and D. H. Busch, *J. Am. Chem. Soc., 82*, *820* (1960).
- 15 R. C. Stoufer, D. W. Smith, E. A. Clevenger and T. E. Norris, *Inorg.* Chem., 5, 1167 (1966).
- 16 J. D. Curry, M. A. Robinson and D. H. Busch, Inorg. *Chem., 6, 1570* (1967).
- 17 A. H. Maki, H. Edelstein, A. Davidson and R. H. Helm, *J. Am. Chem. Sac.. 86.4580* (1964).
- *18* G. N. Schrauzer and L. P. Lee, J. *Am. Chem. Sot., 90, 654* (1968).
- .
נפ J. S. Griffith, *Disc. Faraday Sot., 26, 81* (1958).
- $\overline{1}$ J. M. Assour, *J. Chem. Phys., 43, 2477* (1965).
- 1 Y. Nishida and S. Kida, *Bull. Chem. Soc. Jpn.*, 51, 143 (1978).
- 22 R. Barbucci, A. Bencini and D. Gatteschi, *Inorg. Chem.,* 16, 2117 (1977).