¹⁵N, ³¹P and ¹⁹⁵Pt NMR Studies of Thiocyanate Complexes

P. S. PREGOSIN, H. STREIT and L. M. VENANZI

Laboratorium für Anorganische Chemie, ETH-Zentrum, Universitätstrasse 6, CH-8092 Zürich, Switzerland

Received June 5, 1979

¹⁵N-NMR studies of thiocyanate metal complexes show that chemical shifts are diagnostic for determining whether this ligand is N- or S-bonded. ¹⁹⁵Ptand, to a lesser extent, ³¹P-NMR parameters of complexes containing these nuclei are also diagnostic for the mode of coordination of the thiocyanate ion. Several linkage isomers of the $[Pt/^{15}NCS)_n$ - $(SC^{15}N)_{4-n}]^{2-}$ ion are shown to exist in methylene chloride solution.

Introduction

The ambidentate thiocyanate ligand, SCN⁻, is well known to coordinate to transition metals either through nitrogen or sulfur [1]. The factors affecting the mode of coordination are: 1) the nature of the metal, 2) the nature of the remaining ligands within the coordination sphere, 3) the steric size of the other ligands and 4) the solvent. The interplay of these factors is such that complexes which contain both N and S bound thiocyanate ligands are possible. The chemistry of SCN⁻ complexes has been recently reviewed [2].

A variety of spectroscopic methods have been employed in an attempt to distinguish between the two modes of coordination. These include infra-red [3], X-ray [4] and NQR [5] methods as well as nitrogen-14 [6] and phosphorus-31 [7] NMR spectroscopy.

Our previous NMR measurements [8, 9] on enriched nitrogen-15 (I = $\frac{1}{2}$, natural abundance = 0.36%) complexes have led us to believe that an NMR study of this nucleus can provide a useful complement to ¹⁴N NMR. Specifically, the ¹⁵N method is superior to ¹⁴N NMR when the latter affords extremely broad signals and/or when a broadened resonance obscures the signal of a less intense resonance of similar chemical shift. The utility of ¹⁵N NMR in thiocyanate chemistry is based on the expectation [6, 8] that coordination of the nitrogen lone-pair will affect a relatively large increase in the ΔE term of the paramagnetic screening constant*, σ_{p} , equation 1,

 $\sigma_{\rm p}(^{15}{\rm N}) \propto -(1/\Delta E) \tag{1}$

resulting in an upfield (lower frequency) shift

$$\nu(^{15}N) \propto (1 - \sigma_{p}) \tag{2}$$

(see equation 2), whereas for sulfur coordination, the electron density of nitrogen will be changed to a lesser extent. In order to test this hypothesis, and facilitate the measurements, we have synthesized a series of thiocyanate complexes enriched with >95 atom% ¹⁵N and measured their ¹⁵N NMR spectra. Those thiocyanate complexes which contain other readily measured I = $\frac{1}{2}$ nuclei, e.g. ³¹P and ¹⁹⁵Pt are expected to couple to the ¹⁵ N, and provide an additional structural probe. For the specific case of platinum-thiocyanate complexes, the metal resonance (¹⁹⁵Pt, I = ½; natural abundance = 33.7%) should provide yet another tool for determining the mode of coordination since it is well known that substitution of sulfur for nitrogen results in an upfield shift of the ¹⁹⁵Pt resonance by several hundred ppm [10]. We report here our ¹⁵N, ¹⁹⁵Pt and ³¹P NMR results for our enriched ¹⁵N thiocyanate complexes.

Experimental

¹⁵N, ³¹P and ¹⁹⁵Pt NMR spectra were measured on samples contained in 10 mm tubes using a Bruker HX-90 E spectrometer. The basic frequency of 19.3 MHz for the ¹⁹⁵Pt measurements was derived from a Bruker frequency synthesizer, whereas for the ¹⁵N

^{*} ΔE is the mean triplet excitation energy approximation. We presume that nitrogen coordination increases the excitation energy of one or more transitions associated with the nitrogen lone pair. *E.g.* a low lying $n \rightarrow \pi^*$ is removed.

¹⁵ N Data			
Complex	δ ¹⁵ N	Δδ	
S-Bound			
$(Bu_4N)_2[Pd(SC^{15}N)_4]$	225.3	36.3	
$(Bu_4N)_2[Pt(SC^{15}N)_4]$	224.1	35.1	
(Bu ₄ N) ₂ [Hg(SC ¹⁵ N) ₄]	214.5	25.5	
N-Bound			
(Bu ₄ N) ₂ [Zn(¹⁵ NCS) ₄]	131.1	57.3	
(Bu ₄ N) ₂ [Cd(¹⁵ NCS) ₄]	148.7	40.3	
trans-[Pt(¹⁵ NCS) ₂ (PBu ₃ ⁿ) ₂]	43.2	145.8	
trans-[Pt(¹⁵ NCS)(SC ¹⁵ N)(PBu ₃ ⁿ) ₂]	71.9	117.1	
¹⁹⁵ Pt Data			
Complex	¹⁹⁵ Pt	¹ J(¹⁹⁵ Pt, ¹⁵ N)	³ J(¹⁹⁵ Pt, ¹⁵ N)
$(Bu_4N)_2[Pt(SC^{15}N)_4]$	-3961		12
(Bu ₄ N) ₂ [Pt(¹⁵ NCS)(SC ¹⁵ N) ₃]	-3431	525	12
$trans-[Pt(^{15}NCS)_2(SC^{15}N)_2]^{b}$	-2805	617	10
trans-[Pt(¹⁵ NCS) ₂ (PBu ⁿ ₃) ₂] ^c	3881	589	
trans-[Pt(^{15}NCS)(SC ^{15}N)(PBu $^{n}_{3}$) ₂] ^d	-4244	491	20
$trans-[Pt(SC^{15}N)_2(PBu_3^n)_2]^e$	4526		20

TABLE I. NMR Parameters^a for the Thiocyanate Complexes.

^{a 15}N and ¹⁹⁵Pt chemical shifts are given in ppm relative to ¹⁵NH₄Cl(aq) (±0.3) and Na₂PtCl₆ (±0.5), respectively. A negative sign indicates a shift to higher field (lower frequency). Coupling constants are in Hz (±3). ^bTrans-isomer assigned based on ¹J(¹⁹⁵Pt, ¹⁵N) value. ^{c 1}J(¹⁹⁵Pt, ³¹P) = 2207 Hz; ²J(³¹P, ¹⁵N) = 4.5 Hz. ^{d 1}J(¹⁹⁵Pt, ³¹P) = 2244 Hz; ²J(³¹P, ¹⁵N) = 4.4 Hz. ^{e 1}J(¹⁹⁵Pt, ³¹P) = 2271 Hz.

and ${}^{31}P$ measurements the built-in units functioning at 9.12 and 36.43 MHz sufficed.

Preparation of the Complexes

The unlabelled thiocyanate complexes were prepared first, using an excess, and subsequently, using a stoichiometric amount of thiocyanate ligand. The complexes obtained showed I.R. spectra and melting points in agreement with the literature. The preparations were then repeated using stoichiometric amounts of NaSC¹⁵N as shown below.

$(Bu_4N)_2[Zn(^{15}NCS)_4]$

An aqueous solution of NaSC¹⁵N (0.131 g; 1.60 mmol) was added to ZnSO₄·7H₂O (0.115 g; 0.40 mmol) dissolved in a minimum amount of water and the resulting colorless solution stirred at room temperature for 2 h. Addition of 2 ml of a 0.4 M aqueous solution of (Bu₄N)NO₃ afforded a white precipitate which was extracted into CH₂Cl₂. Drying over MgSO₄ followed by filtration and concentration gave 0.297 g of a yellow oil which eventually solidified (94.5% yield).

 $(Bu_4N)_2 [Cd(SC^{15}N)_4]$

Solid NaSC¹⁵N (0.389 g; 4.00 mmol) was added to a solution of Cd(NO₃)₂·4H₂O (0.308 g; 1.00 mmol) in 5 ml of water and the solution stirred for several minutes. Addition of an aqueous solution of (Bu₄N)-NO₃ (prepared by filtering the suspension from Bu₄NCl (0.556 g; 2.00 mmol), AgNO₃ (0.340 g; 2.00 mmol) and 5 ml of H₂O) was followed by extraction of the resulting solid with CH₂Cl₂. Drying of the CH₂Cl₂ layer followed by filtration and concentration gave 0.648 g of product (78.2% yield).

$(Bu_4N)_2[Hg(SC^{15}N)_4]$

To a concentrated solution of NaSC¹⁵N (0.164 g; 2.00 mmol) in water was added a concentrated aqueous solution of HgCl₂ (0.136 g; 0.50 mmol) and the resulting suspension stirred at room temperature for 24 h. The remaining precipitate was dissolved by the addition of further water followed by addition of an aqueous solution containing two equivalents of $(Bu_4N)NO_3$ (prepared by filtering the suspension which results from Bu_4NCl (0.278 g; 1.00 mmol), AgNO₃ (0.170 g; 1.00 mmol) and a minimum volume of water).

Extraction of the resulting precipitate with CH₂- Cl_2 , followed by drying (MgSO₄), filtration and concentration afforded 0.437 g of a yellow oil which slowly crystallized (94.8% yield).

$(Bu_4N)_2[Pd(SC^{15}N)_4]$

Solid Pd(NO₃)₂·2H₂O (0.107 g; 0.40 mmol) was added to a solution of NaSC¹⁵N (0.131 g; 1.60 mmol) in 1 ml of H₂O. The red suspension which resulted was diluted with 15 ml H₂O and stirred for 2 h at room temperature. Addition of 2 ml of a 0.4 M aqueous solution of (Bu₄N)(NO₃) was followed by extraction with CH₂Cl₂. Drying of MgSO₄ followed by filtration and concentration afforded 0.321 g of product as a dark red solid (97.0% yield)).

$(Bu_4 N)_2 [Pt(SC^{15}N)_4]$

A solution prepared from K₂PtCl₄ (0.208 g; 0.50 mmol) and NaSC15N (0.164 g; 2.00 mmol) in 2 ml of H₂O was stirred at room temperature for 2 h. To this was added a solution of Bu₄NCl (0.278 g; 1.00 mmol) in 4 ml of CH_2Cl_2 followed by vigorous stirring for several hours. Extraction with additional CH₂Cl₂ followed by drying (MgSO₄), filtration and concentration gave 0.434 g of product (94.8% yield).

trans- $[Pt({}^{15}NCS)_n(SC{}^{15}N)_2 - n(PBu_3^n)_2]$ Mixing solutions of *trans*- $[PtCl_2(PBu_3^n)_2]_(0.983 g;$ 1.467 mmol) in 10 ml ethanol and NaSC¹⁵N (0.241 g; 2.93 mmol) in 4 ml ethanol precipitates NaCl and product almost instantaneously. The reaction mixture was taken to dryness and then extracted with CH₂Cl₂. Filtration to remove NaCl followed by concentration and drying i.V. gave 1.032 g of product (98.1% yield).

Results and Discussion

¹⁵N NMR

In Table I we show the ¹⁵N chemical shifts for a series of complexes containing ¹⁵N-thiocvanate ligands. For the complex anions Pd(SC¹⁵N₄²⁻, Ptand $Hg(SC^{15}N)_4^2$, in which the $(SC^{15}N)_4^{2^{-1}}$ thiocyanate is believed to be coordinated through sulfur, we observe ¹⁵N resonances between 214.5 and 225.3 ppm. These represent coordination chemical shifts, $\Delta\delta$, [= δ (complex) - δ (free ligand)] ranging from +25.5 to +36.3 ppm. This downfield shift brings the signals into the area of nitrile resonances (e.g. Ph-C=¹⁵N, δ = 231.0 ppm [11]), in keeping with the formulation $L_nM-S-C\equiv^{15}N$. For the anions $Zn(^{15}NCS)_4^{2-}$ and $Cd(^{15}NCS)_4^{2-}$ in which the thiocyanate is reported [2] to be coordinated to nitrogen, the ¹⁵N signals shift to higher field at 131.1 and 148.7 ppm, respectively. These represent coordination chemical shifts of -57.3 and -40.3 ppm. The phosphine complex trans-[Pt(¹⁵NCS)_n- $(SC^{15}N)_{2-n}(PBu_3^n)_2$ shows nitrogen resonances at 43.2 ppm and 71.9 ppm, which represent $\delta \Delta$ values of -145.8 ppm and -117.1 ppm, ¹J(¹⁹⁵Pt, ¹⁵N) = 589 Hz and 491 Hz, respectively clearly indicating nitrogen coordination of thiocyanate ligands.

We assign the signal at 43.2 ppm to trans-[Pt-(¹⁵NCS)₂(PBuⁿ₃)₂] and that at 71.9 ppm to trans- $[Pt(^{15}NCS)(SC^{15}N)(PBu_3^n)_2]^*$. This assignment is supported by the ¹⁹⁵Pt data which we discuss later. In a solution containing primarily trans-[Pt(NCS)2-(PEt₃)₂] a second isomer formulated as trans-[Pt- $(NCS)(SCN)(PEt_3)_2$ has been observed [12].

As noted above, a freshly prepared solution of $(Bu_4N)_2$ [Pt(SC¹⁵N)₄] in methylene chloride affords a single ¹⁵N resonance at 224.1 ppm, flanked by ¹⁹⁵Pt satellites. The platinum-nitrogen coupling of 12 Hz is consistent with the presence of only S-bonded thiocyanate ligands. Remeasurement of this sample after several months revealed new ¹⁵N signals at 83.8, 50.3 and 40.8 ppm, suggestive of N-bound thiocyanate, as well as additional signals in the region around 224 ppm. Although we were not able to locate the corresponding ¹⁹⁵Pt satellites for the new resonances, clearly, the possibility of linkage isomerism is indicated. This problem is also discussed further in the next section.

We conclude from our ¹⁵N data that, for thiocyanate complexes, ¹⁵N NMR provides a general method for assessing the mode of coordination of this ligand. The large upfield coordination chemical shift of the N-bound isomer contrasts markedly with the moderate downfield shift on S-coordination, allowing a clear distinction between the two possibilities. Further, ¹⁵N NMR can provide evidence for the existence of small quantities of linkage isomers which might go unnoticed using other spectroscopic forms. Large high field ¹⁵N coordination chemical shifts have been found for imine [13] and azo [8] complexes of platinum, suggesting that this may be a general phenomenon for sp² nitrogen bound to metals.

¹⁹⁵Pt NMR

Our inability to satisfactorily characterize all the components of the solutions of (Bu₄N)₂ [Pt(¹⁵NCS)_n- $(SC^{15}N)_{4-n}$] and $trans - [Pt(^{15}NCS)_n(SC^{15}N)_{2-n}]$ (PBuⁿ₃)₂] prompted us to measure the ¹⁹⁵Pt NMR spectra of these solutions. For the former complex we find at least** four sets of signals, three of which are shown in Fig. 1.

^{*}The failure to observe the non-coordinated ¹⁵N resonance of the S-bonded thiocyanate in this complex suggests a much longer T_1 for this nitrogen relative to the coordinated nitrogen.

^{**}There are other smaller sets of resonances which we cannot readily identify.

Fig. 1. The ¹⁹⁵Pt resonance from the A) $[Pt(^{15}NCS)_4]^{2-}$, B) $[Pt(^{15}NCS)(SC^{15}N)_3]^{2-}$, and C) trans- $[Pt(^{15}NCS)_2(SC^{15}N)_2]^{2-}$ anions. The data were obtained from an aged CH_2CI_2 solution of the complex $(Bu_4N)_2[Pt(^{15}NCS)_n(SC^{15}N)_{4-n}]$.

The pentet at -3961 ppm represents the [Pt(S-C¹⁵N)₄]²⁻ ion and stems from the coupling of four equivalent ¹⁵N atoms. The appearance of a doublet of quartets at -3431 ppm stemming from one large ¹J(¹⁹⁵Pt, ¹⁵N) coupling and three small ³J(¹⁹⁵Pt, ¹⁵N) couplings is consistent* with an isomer of the type [Pt(¹⁵NCS)(SC¹⁵N)₃]²⁻. Another group of signals contains a triplet of triplets centered at -2805 ppm, derived from two large ¹J(¹⁹⁵Pt, ¹⁵N) couplings and two much smaller ³J(¹⁹⁵Pt, ¹⁵N) interactions to which we assign the structure *trans*-[Pt(¹⁵NCS)₂-(SC¹⁵N)₂]. The deshielding of these platinum resonances by 530 and 1156 ppm as a thiocyanate is stepwise inverted from S- to -N coordination is in

240

keeping with the data concerning ¹⁹⁵Pt NMR [10, 14]. There is another set of resonances at -3547ppm, similar in multiplicity to that at -3431 ppm, which may be due to the presence of bridging thiocyanates, but this assignment is uncertain. Thus it would seem that the initial formation of a single product containing four sulfur bonded thiocyanates may be kinetically controlled and that, at least in CH₂Cl₂ solution, several isomers are sufficiently stable, thermodynamically, to be observed at room temperature using NMR methods.

The ¹⁹⁵Pt spectrum of trans-[Pt(^{15}NCS)_n-(SC ^{15}N)_{2-n}(PBuⁿ₃)₂] (Fig. 2) reveals all three of the linkage isomers, I–III, with chemical shifts of -3881, -4244 and -4526 ppm, respectively. Isomer I is readily identified as a triplet of triplets stemming from one-bond ¹J(^{195}Pt , ^{31}P), and ¹J(^{195}Pt , ^{15}N) interactions. Complex II shows a triplet due to

^{*}The digital resolution is insufficient to resolve the different types of ${}^{3}J({}^{195}Pt-S-C={}^{15}N)$ couplings.

 ${}^{1}J({}^{195}Pt, {}^{31}P)$, further split into a large doublet from ${}^{1}J({}^{195}Pt, {}^{15}N)$ and a small doublet from ${}^{3}J({}^{195}Pt, {}^{15}N)$. The S, S isomer, III, which we and others [12] had thus far been unable to observe, appears as a triplet of triplets, in which the fine structure stems from two equivalent small three-bond couplings. The ${}^{1}J({}^{195}Pt, {}^{15}N)$ values for I and II (589 and 491 Hz respectively) are consistent with those found in the

 $Pt(C^{15}NS)_4^{2^-}$ isomers, with N *trans* to N showing a slightly larger value than N *trans* to S.

Once again the differences in ¹⁹⁵Pt chemical shifts provide supportive evidence for the bonding in these isomers, with sulfur coordination affording a high field shift relative to nitrogen coordination. This type of chemical shift empiricism should prove useful in cases where there is no other convenient nuclear spin in the molecule. It seems that direct observation of the ¹⁹⁵Pt NMR spectrum is superior to either ¹⁹⁵Pt INDOR or direct ¹⁵N measurements for this type of mixture of isomers.

$^{31}PNMR$

For the complexes trans-[Pt(¹⁵NCS)_n(SC¹⁵N)_{2-n}-(PBuⁿ₃)₂], the identification of all three species is made simpler by the presence of the phosphine ligands. The ³¹P NMR spectrum of the mixture shows a triplet (for I), a doublet (for II) and a singlet (for III), all with the appropriate ¹⁹⁵Pt satellites. That these are all *trans* isomers may be deduced from both the magnitudes of ¹J(Pt, P) [10] and ²J(³¹P, ¹⁵N) [9]. We note that the values ¹J(¹⁹⁵Pt, ³¹P) increase slightly (2207, 2244 and 2271 Hz, respectively) and that the ³¹P chemical shift decreases slightly (10.4, 8.3 and 6.0 ppm, respectively) on proceeding from I to III.

These observations should prove helpful in identifying linkage isomers of thiocyanate in other phosphine complexes. Of the three NMR methods, discussed so far, the phosphorus probe is the most

easily applied $(10^{-2} M \text{ solutions present no serious problem})$, though necessarily restricted to complexes containing phosphorus ligands.

In conclusion we have shown that ¹⁵N NMR is a useful general NMR probe for determining the nature of the thiocyanate bonding in a variety of metal complexes. Where other centers are magnetically active, a combination of NMR methods is superior. This is especially true in platinum chemistry where the favorable NMR characteristics of this metal make it the NMR probe of choice.

Acknowledgments

Thanks are due to H. Motschi for experimental assistance and both H. Motschi and R. W. Kunz for helpful discussions.

References

1 J. L. Burmeister and F. Basolo, Inorg. Chem., 3, 1587 (1964).

- 2 a) A. H. Norbury, in 'Advances in Inorganic and Radiochemistry', Academic Press (1975) vol. 17, p. 231; b)
 J. L. Burmeister, in 'Chemistry and Biochemistry of Thiocyanic Acid and its Derivatives', (Ed. A. Newman), Academic Press (1975) pp. 68-130.
- 3 J. L. Burmeister, Coordination Chem. Rev., 1, 205 (1966) ibid., 3, 225 (1968).
- 4 G. Baran and G. J. Palenik, *Chem. Comm.*, 1354 (1970).
 5 C. P. Cheng, T. L. Brown, W. C. Fultz and J. L. Burmeister, *Chem. Comm.*, 599 (1977).
- 6 O. W. Howart, R. E. Richards and L. M. Venanzi, J. Chem. Soc., 3335 (1964).
- 7 A. J. Carty and S. E. Jacobson, Chem. Comm., 175 (1975).
- 8 P. S. Pregosin and E. Steiner, *Helv. Chim. Acta*, 59, 376 (1976).
- 9 H. Motschi, P. S. Pregosin and L. M. Venanzi, *Helv. Chim.* Acta, 62, 666 (1979).
- 10 P. L. Goggin, R. J. Goodfellow, S. R. Haddock, B. F. Taylor and I. R. H. Marshall, J. Chem. Soc. Dalton, 459 (1976).
- 11 P. S. Pregosin, E. W. Randall and A. I. White, J. Chem. Soc. Perkin, 513 (1972).
- 12 S. J. Anderson, P. L. Goggin and R. J. Goodfellow, Chem. Soc. Dalton, 1959 (1976).
- 13 H. Motschi and P. S. Pregosin, unpublished results.
- 14 P. S. Pregosin and L. M. Venanzi, Chemistry in Britain, 14, 276 (1978).