L. F. LARKWORTHY and M. H. O. NELSON-RICHARDSON

The Joseph Kenyon Laboratory, University of Surrey, Guildford, GU2 5XH, U.K. Received October 27, 1979

The new chromium(II) complexes: $CrCl_2 \cdot 2tu$, its acetone adduct, $CrBr_4 \cdot 4tu$, $CrI_2 \cdot 6tu$; $CrCl_2 \cdot 2etu$, $CrBr_2 \cdot 5etu$, $CrI_2 \cdot 4etu$; $CrCl_2 \cdot dctu$, $CrBr_2 \cdot 5dctu$, and $CrI_2 \cdot 6dctu$, where tu, etu, and dctu are respectively thiourea, N,N'-ethylenethiourea, and N,N'-dicyclohexylthiourea, have been isolated from a weaklydonating solvent mixture. The chlorides are antiferromagnetic and are believed to be linear polymers. The other complexes are high-spin and magneticallydilute.

Introduction

No complexes of chromium(II) with neutral sulphur-donor ligands have been reported. Chromium-(II) is expected, from its position in the Periodic Table, to show predominantly Class a behaviour, and most known complexes are of O- and N-donor ligands. However, we have found that complexes of chromium(II) halides and thiourea (tu), N,N'-ethylenethiourea (etu), and N,N'-dicyclohexylthiourea (dctu) can be isolated from a weakly-donating solvent mixture [1] of acetone and small amounts of 2,2dimethoxypropane and methanol. The new complexes (Table I) are: CrCl₂·2tu and its mono-acetone adduct, CrBr₂·4tu, CrI₂·6tu, CrCl₂·2etu, CrBr₂·5etu, $CrI_2 \cdot 4etu$; $CrCl_2 \cdot dctu$, $CrBr_2 \cdot 5dctu$, and $CrI_2 \cdot$ 6dctu. The magnetic behaviour down to liquid nitrogen temperature and some spectroscopic properties of these complexes are reported.

Experimental

All manipulations of chromium(II) compounds were carried out under nitrogen or in vacuum. Physical measurements were carried out as before [2].

Attempts to isolate complexes of chromium(II) halides [3] with thioureas from water, dimethylformamide, and the lower alcohols were unsuccessful because these solvents are more powerful donors than the thioureas. Anhydrous chromium(II) chloride was prepared by the reaction between hydrogen chloride and anhydrous chromium(II) acetate in diethyl ether

[4], and by thermal dehydration of $CrCl_2 \cdot 4H_2O$, but it was insoluble in weak donor solvents such as acetone and ethyl acetate and so was not suitable for reactions with the thioureas. It was then found that hydrated chromium(II) bromide and iodide dissolve readily in a mixture of acetone and just more than sufficient 2,2-dimethoxypropane to react with all the water of hydration to give methanol and acetone. When $CrCl_2 \cdot 4H_2O$ was similarly treated it was found necessary to add extra methanol (10 cm³) to dissolve all the $CrCl_2 \cdot 4H_2O$ (prepared from 3 g of the metal) in 150 cm^3 of solution. These halide solutions are referred to as 'acetone' solutions in the preparations described below, but they contain variable and small amounts of methanol which did not prevent the isolation of the complexes of thioureas. The weights of chromium(II) halide recorded in the preparations refer to the weight of hydrated halide from which the 'acetone' solution was prepared. The complexes were obtained in good yield.

To prepare CrCl₂·2tu a suspension of thiourea in acetone (2.5 g, 30 cm³) was added to an 'acetone' solution of chromium(II) chloride (3.4 g). After shaking, the yellow-green solid (the mono-acetone adduct) which separated was filtered off, washed with acetone, and dried by pumping on it at room temperature for two hours, and at 130 °C for a further five hours. The dry solid was bright yellow, and it turned brown almost instantaneously on exposure to air. The yellow-green mono-acetone adduct was obtained by drying at room temperature. Its infra-red spectra contained bands at 1675 cm⁻¹ (s) and 1240 cm⁻¹ (m) assigned to the ν (CO) and coupled ν (CO) and ν (CC) vibrations of acetone.

The complexes $CrBr_2 \cdot 4tu$ and $CrI_2 \cdot 6tu$ were similarly prepared, but it was necessary to concentrate the solution and add ethyl acetate in excess to induce crystallisation.

The complex $CrCl_2$ ·2etu was prepared as follows. A suspension of N,N'-ethylenethiourea (3.1 g in 30 cm³) was added to an 'acetone' solution of chromium(II) chloride (3.0 g). A very pale blue solid separated. The mixture was boiled for 10 minutes and then cooled. The solid was filtered off, washed with acetone, and dried by pumping on it for three hours at room temperature and at 90 $^{\circ}$ C for one hour. The bromide CrBr₂·5etu and the iodide CrI₂·4etu were prepared similarly.

In the preparation of $CrBr_2 \cdot 5dctu$ a suspension of N,N'-dicyclohexylthiourea (5.5 g in 30 cm³) was added to an 'acetone' solution prepared from 3.8 g of $CrBr_2 \cdot 6H_2O$. The mixture was shaken until all the substituted thiourea dissolved, and a few minutes later a light green, feathery solid began to separate. When the separation appeared complete, the solid was filtered off, washed with acetone and dried for several hours at room temperature. The chloride $CrCl_2 \cdot dctu$ and the iodide $CrI_2 \cdot 6dctu$ were similarly prepared except that the reaction mixture was boiled for 5–10 minutes and the solids were dried at 100–120 °C.

Attempts were made to prepare bis-, tetrakis- and hexakis-thiourea complexes with each halide, but only one complex of each thiourea and halide could be isolated. The complexes of chromium(II) bromide with five molecules of N,N'-ethylene-thiourea or N,N'-dicyclohexylthiourea separated even from solutions containing 2 mol of the substituted thiourea per mole of chromium(II) bromide. Attempts to isolate complexes of N,N'-di-n-butylthiourea were also unsuccessful, possibly because this ligand is much more soluble than the other thioureas.

Results and Discussion

Magnetism

The bromides and iodides have effective magnetic moments μ_{eff} (Table I) which are essentially temperature-independent and close to the spin-only value for four unpaired electrons (4.90 E.M.) as expected for high-spin chromium(II). They obeyed the Curie law $(\theta \simeq 0)$ and are therefore magnetically dilute. This magnetic behaviour and their spectroscopic properties described below show that these complexes are monomeric. Complexes CrBr₂·4tu and CrI₂·4etu are presumably trans-octahedral like other metal(II) complexes [5] of this stoichiometry but no X-ray data are available. The chloro-complexes, on the other hand, are antiferromagnetic. They have magnetic moments (Tables I and II) below the spin-only value at room temperature which decreased still further as the temperature was lowered. The Curie-Weiss law was obeyed at high temperatures by CrCl₂·2tu and

Compound	Analyses ^a					µ _{eff} ^b /B.M.	θ/°	10 ⁶ x₽
	C	н	N	Сг				
CrCl ₂ •2tu yellow	8.6(8.7)	2.9(2.9)	19.9(20.4)	19.1(18.9)	295 90	4.49 3.94	23 °	130
CrCl ₂ ·2tu·CH ₃ COCH ₃ yellow-green	17.9(18.0)	4.3(4.2)	16.9(16.8)	15.5(15.6)	295 90	4.41 3.38	96 °	165
C1B12•4tu light blue	9.4(9.3)	3.1(3.1)	22.2(21.7)	10.1(10.1)	295 90	4.86 4.89	0	237
CrI2•6tu blue-green	9.6(9.5)	3.0(3.2)	21.9(22.0)	7.1(6.8)	295 90	4.97 4.97	0	353
CrCl ₂ •2etu light blue	21.9(22.0)	3.7(3.7)	16.7(17.1)	16.1(15.9)	295 90	4.33 3.16	d	167
CrBr2•5etu blue-green	24.7(24.9)	4.2(4.2)	18.8(19.4)	7.2(7.2)	295 90	4.75 4.75	0	370
CrI ₂ •4etu light green	20.5(20.2)	3.4(3.4)	15.9(15.7)	7.4(7.3)	295 90	4.87 4.89	0	341
CrCl ₂ •dctu yellow	42.8(43.0)	6.9(6.7)	7.7(7.7)	14.5(14.3)	295 90	3.83 2.45	d	220
CrBr ₂ •5dctu light green	54.9(55.2)	8.8(8.5)	9.6(9.9)	3.7(3.7)	295 90	4.74 4.77	0	934
CrI ₂ •6dctu yellow green	53.3(53.6)	8.5(8.3)	9.3(9.6)	2.8(3.0)	295 90	4.77 4.76	0	1140

TABLE I. Analytical and Magnetic Data.

^aCalculated values in parentheses. ^bCalculated from $\mu_{eff} = 2.828 (\chi_A T)^{1/2}$ B.M., χ_L is diamagnetic correction (c.g.s.). ^cThe Curie-Weiss law was taken as $\chi_A^{-1} \alpha(T + \theta)$, and as the χ_A^{-1} versus T graph showed upward curvature at low temperatures θ was obtained from the linear high temperature part of the graph. ^dThe Curie-Weiss law was not obeyed over the temperature range available.

TABLE II. Exchange Integrals (J) and Temperature Variation of Magnetic Properties of Chloro-complexes.

$CrCl_2 \cdot 2tu (J = 3.$	26 cm ⁻¹ , g = 1	.96)						
T(K) $10^{6}\chi_{A}$ (c.g.s.) $\mu_{eff}(B.M.)$ T(K) $10^{6}\chi_{A}$ (c.g.s.) $\mu_{eff}(B.M.)$	294.5 8535 4.49 104.0 19660 4.05	262.5 9344 4.43 89.5 21640 3.94	230.0 10620 4.42	198.5 12040 4.38	166.5 13990 4.32	136.0 16330 4.22		
CrCl ₂ ·2tu·CH ₃ C	$OCH_3 (J = 6.1)$	$9 \text{ cm}^{-1}, \text{g} = 2.$	03)					
T(K) $10^{6}\chi_{A}$ (c.g.s.) $\mu_{eff}(B.M.)$	295.0 8251 4.41	262.8 8966 4.34	230.0 9861 4.26	198.5 10900 4.16	166.5 12160 4.02	135.0 13570 3.83	103.5 15240 3.55	89.5 15960 3.38
CrCl ₂ ·2etu (J = 7	$1.70 \text{ cm}^{-1}, \text{g} = 1$	2.07)						
T(K) 10 ⁶ χ _A (c.g.s.) μ _{eff} (B.M.)	295.0 7937 4.33	262.5 8662 4.27	230.5 9492 4.18	198.5 10460 4.08	166.5 11530 3.92	136.0 12630 3.71	104.0 13710 3.38	89.5 13980 3.16
$CrCl_2 \cdot dctu (J =)$	12.5 cm ¹ , g =	1.99)						
T(K) 10 ⁶ χ _A (c.g.s.) μ _{eff} (B.M.)	294.5 6221 3.83	262.5 6595 3.73	230.0 7029 3.60	198.5 7444 3.44	166.5 7838 3.23	135.0 8178 2.98	104.0 8334 2.64	89.5 8294 2.44

Fig. 1. Plots of reciprocal molar susceptibility χ_A^{-1} against absolute temperature for CrCl₂·2tu·CH₃COCH₃(A), CrCl₂· 2etu(B), and CrCl₂·dctu(C). The scale at the left hand side applies to B. The lines are calculated by substitution in equation (1) of the J and g values in Table II.

 $CrCl_2 \cdot 2tu \cdot CH_3COCH_3$, but there was upward curvature of the χ_A^{-1} versus T graph at low temperatures (Fig. 1). The complexes $CrCl_2 \cdot dctu$ and $CrCl_2 \cdot 2etu$ did not obey the Curie-Weiss law over the temperature range studied: the former has a broad Néel point at 100 K, and the latter appears to have a Néel

point just below the lower limit of the magnetic measurements (Fig. 1). Thus the chlorides have bridged structures, perhaps analogous to those of the pyridine halides [2], which lead to the antiferromagnetic interaction. Presumably the failure to isolate complexes of the type CrX_2 ·2thiourea when X is bromide or iodide reflects the weaker bridging ability of these halides.

The antiferromagnetic behaviour of the chlorides can be reproduced (Fig. 1) by substitution of the values of J (exchange integral) and g given in Table II in equation (1):

$$\chi_{\mathbf{A}}(\mathbf{T}) = \frac{Ng^2 \mu_{\mathbf{B}}^2 S(S+1)}{3kT} \times \frac{1 + u(K)}{1 - u(K)}$$
(1)

where $u(K) = \operatorname{coth} K - (1/K)$ and K = 2JS(S + 1)/kT. Equation (1) has been derived by Smith and Friedberg [6] to describe antiferromagnetic interaction in a linear chain of paramagnetic metal ions.

Electronic and Infrared Spectra

The diffuse reflectance spectra (Table III) generally consist of a main band in the range 11000 to 14000 cm⁻¹, (ν_2) and a less intense band or shoulder (ν_1) at lower frequency. This is the usual pattern [2] of bands for distorted six coordinate, high-spin chromium(II) complexes. The main band is assigned, in D_{4h} symmetry, to superimposed transitions ${}^5B_{1g} \rightarrow {}^5B_{2g}$, ${}^5E_g(\nu_2)$ and the weaker band to the transition

					$\bar{\nu}/\mathrm{cm}^{-1}$	
					ν ₂	<i>v</i> ₁
$CrCl_2 \cdot 2tu^a$	RT ^b LT		17150vw 17000vw	14950vw 14950vw	1 1600s 1 1 700s	8000msh 7400m
CrCl ₂ •2tu•CH ₃ COCH ₃	RT LT		17800vw 17800vw		11900s 12500s 11800sh	8400msh 8300m
CrCl ₂ •2etu	RT	21400vw	17600vw 17200vw		11400s	
	LT	21200vw 20100vw	17600vw 17150w 16700vw		11600s	9000msh
CrCl ₂ •dctu	RT LT		18200vw 18200vw 17300vw	15300vw 15300vw	1 1000s 1 1400s	6 700m 6 700m
CrBr ₂ •4tu	RT LT				12200s 14000ssh 12600s 11400s	8000msh 9000msh
CrBr ₂ •5etu	RT LT		17200vw		13900s 14500s 11000m	11000msh 9800msh
CrBr ₂ •5dctu	RT LT		19800vw 19800vw		12800s 13000s	9600msh 10200msh
CrI2·6tu	RT	22600vw	20200w 19200vw		13300vs	
	LT	22500vw	20200w 19200w		13600vs	11200msh
Crl ₂ ·4etu	RT LT	21000w 20700w	17400vw 17200w		11400vs 11700vs	10200vs
CrI2·6dctu	RT				14000m 11600msh	
	LT				14300m 11800w	6000w

TABLE III. Reflectance Spectra.

^aAll complexes have strong absorption in the region of 30000 cm⁻¹. ^bRT = room temperature, LT = liquid nitrogen temperature.

 ${}^{5}B_{1g} \rightarrow {}^{5}A_{1g}(\nu_{1})$. In the spectra of $CrCl_{2} \cdot 2tu \cdot CH_{3}COCH_{3}$, $CrBr_{2} \cdot 5etu$ and $CrI_{2} \cdot 6dctu$ at liquid nitrogen temperature the ν_{2} band appears to be resolved into two components, and in the low temperature spectrum of $CrBr_{2} \cdot 4tu$ there are three strong bands indicating some splitting of the E_{g} term. The weak bands to higher frequency than ν_{2} are presumably due to spin forbidden absorptions.

The position of the main band ν_2 is an approximate indication of the ligand field splitting 10Dq, and since ν_2 is well below the values found for analogous complexes of N-donor ligands [Cr(mepy)_4X_2 [2], $\nu_2 \simeq 17000 \text{ cm}^{-1}$; Cr(NH₃)₄(OH₂)SO₄ [7], $\nu_2 \simeq 18000 \text{ cm}^{-1}$, and Cr(mepy)₂X₂, $\nu_2 \simeq 14500 \text{ cm}^{-1}$, where mepy is 3- or 4-methyl-pyridine and X is halide] the thioureas are acting as S-donors rather

than N-donors. Coordination through nitrogen would also be expected to decrease the N-H stretching frequencies of the complexes relative to the free ligands, but only minor differences were found in the 3300 cm^{-1} region, arising from changes in the degree of hydrogen bonding.

The complexes $CrBr_2$ -Setu and $CrBr_2$ -Sdctu may be five coordinate. Their reflectance spectra indicate considerable distortion but do not establish the coordination number or stereochemistry. A suitable solvent could not be found for conductance measurements. The far infrared spectra (400-70 cm⁻¹) of these complexes did not contain any prominent bands which were not also present in the free ligand, thus no bands which could be assigned to $\nu(Cr-Br)$ could be found, but this is not conclusive. The far infrared spectra $(400-250 \text{ cm}^{-1})$ of the chlorides contained bands at 320 cm⁻¹ (CrCl₂·2tu and CrCl₂·2etu) and 315 cm⁻¹ (CrCl₂·dctu) which can be assigned to Cr-Cl stretching vibrations. The chloride-bridged, linear polymers Cr(mepy)₂Cl₂ absorb in the same region [2].

References

1 L. F. Larkworthy and M. H. O. Nelson-Richardson, Inorg. Chim. Acta, 28, 251 (1978).

- 2 M. M. Khamar, L. F. Larkworthy and M. H. O. Nelson-Richardson, Inorg. Chim. Acta, 28, 245 (1978).
- 3 A. Earnshaw, L. F. Larkworthy and K. S. Patel, J. Chem. Soc., 3267 (1965).
- 4 'Handbook of Preparative Inorganic Chemistry', Vol. 2, p. 1336, ed. G. Brauer, Second Edition, Academic Press, New York (1965).
- 5 A. Lopez-Castro and M. R. Truter, J. Chem. Soc., 1309 (1963); J. E. O'Connor and E. L. Amma, Chem. Comm., 892 (1968); Inorg. Chem., 8, 2367 (1969). 6 T. Smith and S. A. Friedberg, Phys. Rev., 176, 660
- (1968).
- 7 L. F. Larkworthy and J. M. Tabatabai, J. Chem. Soc. Dalton, 814 (1976).