ketoanilide (Cu·L) rings. However, the ternary complexes Cu·A·L are very stable. $\Delta \log[K_{Cu·A·L}^{Cu·A} - L]$ $K_{Cu\cdot L}^{Cu}$ is positive though in $Cu\cdot\beta$ -diketone complexes $\Delta \log K$ is zero. This must be because of the lone pair of electron over the anilide nitrogen, which gets delocalized over the β -ketoanilide ring. Due to increased electron density in the ring, Cu d π orbitals do not match in energy with the β -ketoanilide $p\pi$ orbitals in the binary Cu-L complex. In the mixed ligand complex Cu. A. L, however, mutual stabilization due to π -delocalization is more pronounced and hence there is greater stabilization. The extent of stabilization of the mixed ligand complex should depend on the π -delocalization in Cu·A. The order of π -delocalization can be expected to be Cu. dipyridyl > $Cu \cdot o$ -phenanthroline > $Cu \cdot 2, 2'$ -pyridyl benzimidazoline > $Cu \cdot 2,2'$ -pyridyl imidazoline. The formation constants of the mixed ligand complexes $Cu \cdot A \cdot L$ are in the same order.

References

- 1 M. V. Chidambaram and P. K. Bhattacharyia, J. Inorg. Nucl. Chem., 32, 3271 (1970).
- 2 R. Greisser and H. Sigel, Inorg. Chem., 9, 1238 (1970).
- 3 K. Gopalkrishnan and P. K. Bhattacharya, Ind. J. Chem., in press.
- 4 Uma Doraswamy and P. K. Bhattacharya, Ind. J. Chem., 13, 1069 (1975).

Mixed Iron and Cobalt Acetylenic Carbonyl Derivatives

S. AIME, L. MILONE*, D. OSELLA

Istituto di Chimica Generale ed Inorganica dell'Università di Torino, Corso Massimo d'Azeglio 48, 10125 Turin, Italy

and A. TIRIPICCHIO

Istituto di Chimica Generale dell'Università di Parma, Via Massimo d'Azeglio 85, 43100 Parma, Italy

Acetylenic derivatives of mixed metal carbonyl clusters have so far received little attention [1]. Confining to the case of mixed iron and cobalt species $HFeCo_3(CO)_9(C_2Ph_2)_2$ [1], $FeCo_3(CO)_{10}$ - C_2Ph_2 and $FeCO_3(CO)_8C_2Ph_2$ [2] have been reported, but not fully characterized. We have studied the reactions of aliphatic acetylenes with iron and cobalt carbonyls by reacting in acetone the alkyne either with a preformed iron and cobalt cluster, $HFeCo_3(CO)_{12}$, or with a mixture of $Fe(CO)_5$ and $Co_2(CO)_8$. The products are substantially the same from both reactions, but they are obtained in dif-

ferent yields. For the alkyne being 3-hexyne the following complexes have been obtained: $Co_4(CO)_{10}$ - C_2Et_2 , $Co_2(CO)_6C_2Et_2$, $Co_2(CO)_6EtC_2COMe$, Co_2 - $(CO)_6EtC_2CHOHMe$, $FeCo_2(CO)_9C_2Et_2$, $FeCo(CO)_6$ - EtC_2CHMe . The known cobalt derivatives have been fully characterized by m.s., i.r., ¹H and ¹³C-n.m.r. The activation of one of the methylene groups α to the triple bond has also been observed in the products of the reaction with 4-octyne. The results of the reactions of HFeCo₃(CO)₁₂ with 3-hexyne in various solvents suggest that water is the source of the oxygen.

The single crystal X-ray analysis of FeCo₂(CO)₉- C_2Et_2 shows that the complex is made of an iron and cobalt triangle with three terminal CO's bonded to each metal atom. The organic ligand is σ bonded to each cobalt atom and π coordinated to the iron one, acting as a four electron donor. The binuclear iron and cobalt derivative is obtained in low yield from the above reactions, but the yield is increased to 50% by reacting $Fe(CO)_5$ with $Co_2(CO)_6EtC_2CHOHMe$. Similarly from the reaction of iron pentacarbonyl with $Co_2(CO)_6C_2(CH_2OH)_2$, $FeCo(CO)_6CH_2OHC_2$ -CH₂ is obtained: in this reaction also complete dehydroxylation of the ligand occurs with transfer of the ligand from cobalt to iron to give the known $Fe_2(CO)_6CH_2C_2CH_2$ complex [3]. On this evidence and on the basis of the spectroscopic data we suggest for the FeCo(CO)₆RC₂CHR' derivatives a structure in which the ligand is σ bonded to the iron atom (via the carbon atom previously bearing the hydroxy group) and π coordinated to the iron and cobalt atoms.

The stereochemical non rigidity of the novel complexes and of $FeCo_3(CO)_{12}$ will be discussed and compared with that of other iron and cobalt mixed clusters [4].

References

- 1 G. L. Geoffrey and W. L. Gladfelter, Progr. Inorg. Chem., to be published.
- 2 C. G. Cooke and M. J. Mays, J. Organometal. Chem., 74, 49 (1974).
- 3 K. K. Joshi, J. Chem. Soc., 594 (1966).
- 4 S. Aime and L. Milone, Progr. NMR Spectroscopy, 11, 183 (1977).

Solute–Solvent Interaction Studies of Some Cu(II) Complexes by EPR Technique

G. PONTICELLI*, M. MASSACESI and R. PINNA

Istituto Chimico Policattedra, Università di Cagliari, Via Ospedale 72, 09100 Cagliari, Italy

B. A. SASTRY and S. Md. ASADULLAH

Physics Department, Osmania University, Hyderabad 500007, India

Even though many workers have studied solutesolvent interactions of paramagnetic complexes in