The Infrared Spectra of the Digermanyl Halides, Ge_2H_5X , and Related Species

K. M. Mackay, P. Robinson and R. D. George

Received June 12, 1967

The infrared spectra of Ge_2H_5X (X=Cl, Br, I) and of Ge₂D₅Cl have been recorded in the region 4000-250 cm⁻¹ and partially assigned. This tentative assignment is supported from the spectra of Ge_2H_5D and Ge_2D_5H .

Introduction

The preparation and properties of the digermanyl halides, GeH_3GeH_2X , (X = Cl, Br, I) have been reported recently.¹ These compounds are structurally the simplest derivatives of digermane and are important as key intermediates in any approach to the substitution chemistry of digermane. They are also of interest as analogues of the ethyl halides. The digermanyl halides are too unstable for full study but their infra-red spectra may be measured in the gas phase at pressures which are sufficiently low to avoid rapid decomposition. Band contours are observed in sufficient detail to allow a tentative assignment of the vibrational modes, supported by comparisons within this group of molecules and with related molecules. Such characteristic features and partial assignments of these spectra are reported here. Most attention has been focussed on the chloride, which is the most stable of the halides, and its deuterium analogue, GeD₃GeD₂Cl, has also been studied.

These molecules may be discussed in terms of the C_s point group with the symmetry plane passing through the three heavy atoms and one hydrogen of the GeH₃ group. There are then eleven a' fundamentals and seven a" modes. As the axis of largest moment of inertia is out-of-plane, the a" modes should show a C-type contour with a central Q branch. Most of the in-plane modes show a doublet PR contour, with a weak Q branch for the lighter halides. Although these molecules are relatively asymmetric tops, calculation of the P-R separation of the a' modes,² assuming normal bond lengths3 and tetrahedral angles, gives values in reasonable agreement with the average of the observed separations. Table I lists the vibration modes with their approximate description, numbered for GeH₃GeH₂Br. (For convenience, this numbering sequence will be used for all the molecules discussed

Vibrations of the GeH₃GeH₂X Molecule According Table I. to the C_s Point Group

Conventional Description	Symmetry	Symmetry Class	
of the Vibration	a'	a‴	
GeH ₂ stretch	ν,	V ₁₂	
GeH ₃ stretch (asym.)	ν_2	V ₁₃	
GeH ₃ stretch (sym.)	ν_3		
GeH ₂ bend (scissors)	V4		
GeH ₃ deformation (asym.)	ν ₅	v_{14}	
GeH ₃ deformation (sym.)	ν_6		
GeH ₃ wag	ν_7		
GeH ₂ twist		ν ₁₅	
GeH ₂ rock		v_{16}	
GeH ₃ rock	ν_{s}	V17	
GeX stretch	V 9		
GeGe stretch	v_{10}		
GeGeX deformation	νιι		
torsion		V18	
Band Contour	A, B, A-B	C	

here.) If the vibrations of the Ge₂H₅ group are compared with those of the C₂H₅ group for which Pentin⁴ has reported normal coordinate calculations, it may be concluded that the conventional description of vibrations given in Table I is fairly accurate for GeH modes but with some mixing between rocks and skeletal modes. A simplified 3-particle calculation on the skeleton, using force constants from GeH₃X⁵ and digermane,⁶ gives skeletal stretches in reasonable agreement with those observed and predicts the bending mode, v_{11} , at 173 cm⁻¹ for the chloride and 126 cm⁻¹ for the bromide.

Experimental Section

 Ge_2H_5X , X = Cl, Br, I were prepared and characterised as previously described¹ and Ge₂D₅Cl was prepared similarly from Ge₂D₆. Reaction of Ge₂H₅I with PbF: gave small yields of a compound whose ir spectrum indicated it was Ge_2H_5F . We were unable to isolate ε pure sample. Ge₂H₅D and Ge₂D₅H were prepared by the action of LiAlD₄ or LiAlH₄ in monoglyme on the corresponding chloride or iodide. The digermanes were purified by distillation at - 83°C and obtained in better

(6) J. E. Griffiths and G. E. Walrafen, J. Chem. Phys., 40, 321 (1964)

K. M. Mackay, P. Robinson, E. J. Spanier and A. G. MacDiarmid, J. Inorg. Nucl. Chem., 28, 1377 (1966).
 S. L. Gerhard and D. M. Dennison, Phys Rev., 43, 197 (1933);
 T. D. Goldfarb, J. Chem. Phys., 39, 2860 (1963).
 Tables of Interatomic Distances, L. E. Sutton (Editor), Chemical Society Special Publications 11 and 18 (London).

⁽⁴⁾ S. E. Rudakova and Yu. A. Pentin, Optics and Spectroscopy, 18
(359 (1965); idem with T. F. Tulyakova, *ibid*, 20, 253 (1966).
(5) D. E. Freeman, K. H. Rhee and M. K. Wilson, J. Chem. Phys.
(5) 2908 (1963).
(1965).

than 80% yield. The deuterium content was estimated to be better than 95% of theoretical for Ge_2H_5D but about 92% for Ge_2D_5H .

Spectra were run on gas samples at between 5 and 10 mm pressure in a 10 cm cell fitted with KBr or CsI windows on a Perkin-Elmer 521 Spectrometer. Band positions reported were measured on spectra run at \times 5 scale expansion and calibrated with CO, CO₂, NH₃ and atmospheric water vapour. Positions of sharp bands are accurate to \pm 2.5 cm⁻¹. The iodide was too unstable to be run under scale expansion conditions and the frequencies in this spectrum are accurate only to \pm 5 cm⁻¹. A similar accuracy applies for the bands of the impure sample of Ge₂H₅F. Under these conditions, bands due to digermane (the most prominent decomposition product) could just be detected in the spectrum after 10 minutes for the iodide, about 45 minutes for the bromide, and after 3 hours for the chloride.

The Raman spectrum of Ge_2H_5Cl was run in a 0.2 ml cell on a Cary Model 81 spectrometer. Decomposition occurred within 15 minutes.

Results and Discussion

The spectrum of the chloride is typical and is shown in the Figure 1. Frequencies and tentative assignments are listed in Table II.

Figure 1. Spectrum of Digermanyl Chloride (---) and Digermanyl Chloride $-d_s$ (---) at 8 mm pressure in 10 cm cell.

modes. If the sharp, weak 2147 cm⁻¹ absorption is also a fundamental, we may speculate that this is the GeH₂ antisymmetric mode v_{12} (compare vGeH at 2130 cm⁻¹ in GeH₃Cl⁵) and then the 2106 cm⁻¹ band is v_{13} .

The GeF, GeCl and GeBr stretches, v_9 , occur at 666, 412 and 302 cm⁻¹ respectively, somewhat below the frequencies in the germyl halides.⁵ The GeI stretch is expected about 240 cm⁻¹, below our experimental limit. No band assignable as v(GeGe) could be seen

GeH ₃ GeH ₂ Cl	GeD ₃ GeD ₂ Cl	GeH ₃ GeH ₂ Br	GeH ₃ GeH ₂ I	Assignment
2147 sh, w Q?	1510	2144 sh, w Q?		V ₁₂
2007	1508	2087	2100 sh	V13
2087	1500 Vs	2087 Vs	2000 sh	No. No. No.
2070	1495	2075	2000 43	•1, •2, •3
	1490	2013		
934 sh. br. w		934 br. w	932 br. w	a',v4
890 sh, m	631 m	885 sh, m	,	
879 m Q	616 m	877 m Q	872 m Q	a", v ₁₄
873 sh R)	604 sh	870 sh R		
869 sh Q m		} m	857 sh, m	a', v ₅
863 sh P		861 sh P		
796 R	575 R	791 R	787 R	
792 Q s	570 Q } s	s s	s	a', v ₆
787 P)	566 P J	784 P J	780 P J	
728 R	528 R	708 R	683 R	- 1
721 Q vs	522 O vs	701 p	(79 D VS	$\mathbf{a}^{r}, \mathbf{v}_{r}$
/16 P J	518 P J	701 P J	678 P J	N 2
67 d w		470 yyy	467 WW	V15:
405 d, w		346 vw	335 VW	a", v.
415)	414)	305	555 ***	a , v _l /
115 J m	··· }m	Jm Jm		a'. V.
408	407	299		-,.,
,		,		

Table II. The infrared gas phase spectra of the digermanyl halides

(i) An impure sample of $\text{Ge}_2\text{H}_5\text{F}$ contained bands at 2100 sh, 2080 vs (vGeH), 880 sh, 877 m (v₁₄), 871 sh and 861 sh (v₅), 804 and 795 m (v₆), 761, 754 and 748 vs (v₇), 670 and 662 ms (vGeF), 460 vw (v₈). (ii) Raman spectrum of $\text{Ge}_2\text{H}_5\text{Cl}$ up to $\Delta v = 500$ cm⁻¹, shows bands at 394 (9) sharp (v₉), 311 (3) br (v₁₇?), and 264 (10) sharp (v₁₀). (iii) PR separations in $\text{Ge}_2\text{H}_5\text{X}$: X = Cl, Br, I; calculated² 9.5, 7.2, 6.3; observed 9.7, 7.2, 6 (average of v₅, v₆, v₇, v₉ except for iodide v₆, v₇).

Stretching Modes. The five GeH stretches form a complex band envelope between 2070 and 2150 cm⁻¹ and it is impossible to distinguish each mode. A sharp maximum at 2106 cm⁻¹ in the spectra of the chloride and bromide is probably the Q branch of one of the a"

in the gas phase infrared spectra although the 300-250 cm⁻¹ region was carefully examined.⁷ However, we

(7) Ge-Ge stretches were not observed in gas phase i.r. spectra of Ge_3H_8 or Ge_4H_{10} though Raman shifts occur near 280 cm⁻¹ for each of these compounds (Mackay and Sutton, unpublished observations).

Mackay, Robinson, George | I.R. Spectra of Digermanyl Halides

were able to record part of the Raman spectrum of Ge₂H₅Cl, as the neat liquid, before the sample decomposed and observed strong sharp Raman shifts at 264 cm^{-1} and 394 cm^{-1} . The latter is v_9 shifted by the change of phase, (compare vGeCl at 370 cm⁻¹ in solid GeH₃Cl and at 422 cm⁻¹ in the gas phase⁵). Thus the band at 264 cm⁻¹ in the Raman is probably v_{10} , the Ge-Ge stretch, in good agreement with the frequency of 268 cm⁻¹ observed for digermanes.⁶

Deformation and Rocking Modes. The three GeH₃ deformations and the bend and wag of the GeH₂ group occur in the 700-950 cm^{-1} region. Two very strong type A bands occur in this region which are the most distinctive features of the spectra. One of these varies markedly with halogen substituent, from 721 cm⁻¹ in GeH₃GeH₂Cl to 681 cm⁻¹ in the iodide spectrum, and is therefore assigned as a GeH2 mode. The other is much less affected by the halogen and lies in the range 793-783 cm⁻¹. These bands are assigned, respectively, as v_7 and v_6 . By extrapolation of the frequency ranges, the strong frequencies at 798 cm⁻¹ (ν_6) and 754 cm⁻¹ (ν_7) in the impure sample of Ge₂H₅F are similarly assigned. Corresponding bands at 570 cm⁻¹ (ν_6) and 522 cm⁻¹ (ν_7) are found in the Ge₂D₅Cl spectrum.

The three remaining modes in this region, v_4 , v_5 and v_{14} , are probably to be found in the complex contour between 860 and 935 cm⁻¹. In the Ge₂H₅Cl spectrum, the a" GeH₃ mode, v_{14} , is tentatively assigned to the sharp Q branch at 879 cm⁻¹. Then the second GeH₃ asymmetric deformation v_5 , which is expected to be close to v_{14} , could be the three shoulders centred at 869 cm⁻¹ (PQR structure). This leaves the higher frequency shoulder about 930 cm⁻¹ which may be tentatively assigned as v_4 , the GeH₂ mode. Assignments consistent with the above may be made for the bromide and iodide. The corresponding region in the Ge₂D₅Cl spectrum occurs around 620 cm⁻¹ and was not clearly resolved. Assignments of these overlapping modes are necessarily more tentative than those of v_6 and v_7 .

The rocking frequencies, ν_8 , ν_{15} , ν_{16} , and ν_{17} , are less easily assigned. Three weak bands remain in the digermanyl chloride spectrum of which two, those near 460 cm⁻¹ (doublet) and 350 cm⁻¹, are found in similar positions for the other halides. These could be assigned as the GeH₃ modes, v_8 and v_{17} . The remaining weak band at 651 cm⁻¹, which is not seen in the Ge₂H₅Br or Ge₂H₅I spectra, may be one of the GeH₂ modes, v_{15} or v_{16} , more probably the twist. The torsion, v_{18} , would be below 250 cm^{-1} .

Further analogues of the halides are the isotopically substituted digermanes, GeH₃GeH₂D and GeD₃GeD₂H, whose frequencies are given and partially assigned in Table III. These spectra are similar to those of the halides but there is probably more mixing of deformation modes. As expected from the moments of inertia, Q branches of the type A bands are prominent for the deutero-hydrides, being nearly equal in intensity to the P and R branches.

Finally, it is interesting to compare frequencies in related molecules. The GeH₂ wag, v_7 , is the most characteristic frequency in these species and is analogous to the symmetrical deformation mode in

Table III. Infrared gas phase spectra of deuterodigermanes

Ge ₂ H ₅ D	Ge ₂ D ₅ H	Tentative Assignment
2112 sh)		
2085 Vs	2087	
2073 J	} m	GeH stretches
	2076 J	
1506	1510 sh	
} m	1497 vs	GeD stretches
1494	1487	
,	789 w	v_4, v_5
871 b, m	741-696 m	and
-	(complex)	V14
815 R)	599 R)	
808 Q ms	593 Q m	V6
803 P	587 P	
720 R)	567 R)	
715 Q vs	562 Q vs	v_7
708 P	554 P	
610 R)		٧,,?
} m		
600 P)		
520 R I	443 b, w	Vs?
509 P (W		-
367 b, m-w		v_{i7}

GeH₃X, SiH₃X and CH₃X species which was reviewed by Jolly.⁸ In Table IV, this band is compared with its analogues in the ethyl,9 disilanyl,10 germyl5 and

Comparison of v_7 in digermanyl halides with Table IV. corresponding vibrations in related molecules

	F	Cl	Br	I	
CH ₃ CH ₂ X	1365	1287	1248	1208	CH ₂ wag (a')
SiH ₃ SiH ₂ X	841	807	790	757	SiH ₂ wag (a')
GeH ₃ GeH ₂ X	754	721	704	681	GeH ₂ wag (a')
GeH ₃ X	859	848	832	806	GeH ₃ sym. def. (a ₁)
GeH ₂ X ₂	814	779	754	708	GeH ₂ wag (b ₂)

Mixing of a' MH₃ and MH₂ deformation frequencies undoubtendly occurs in the M2H5 groups and is most marked for the ethyl halides. The choice of frequency for the CH₂ wag is therefore somewhat arbitrary.

germylene¹¹ halides. These frequencies change with change in substituent in a similar pattern for all these compound types. The values of v_7 , as do the corresponding frequencies of the silyl and disilanyl halides, show the usual, approximately linear, relationship with the electronegativity of X, and a linear relationship with the volume of X.10

Acknowledgments. We thank the SRC for postgraduate studentships (to P.R. and R.D.G.) and the Germanium Research Committee for a gift of germanium dioxide.

⁽⁸⁾ W. L. Jolly, J. Amer. Chem. Soc., 85, 3083 (1963).
(9) D. C. Smith, R. A. Saunders, J. R. Nielsen and E. E. Ferguson, J. Chem. Phys., 20, 847 (1952); G. Allen and H. J. Bernstein, Can. J. Chem., 32, 1124 (1954); L. W. Daasch, C. Y. Liang and J. R. Nielsen, J. Chem., 79, 22, 1293 (1954); J. K. Brown and N. Sheppard, Trans. Faraday Soc., 50, 535 (1954).
(10) A. G. MacDiarmid and E. J. Spanier: private communication. These are slightly modified frequencies from published spectra: e.g. M. Abedini and A. G. MacDiarmid, Inorg. Chem., 2, 608 (1963); E. J. Spanier, Ph. D. Thesis, University of Pennsylvania (1965).
(11) E. A. V. Ebsworth and A. G. Robiette, Spectrochim. Acta, 20, 1639 (1964). The value for GeH₂I₂ was observed in this laboratory.