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The energy levels of spin coupled systems containing 
up to six polyhedrally arranged magnetic centres ark 
detailed, together with some appropriate to distorted 
polyhedral arrangements. 

Introduction 

There has recently been considerable interest in 
polynuclear transition metal complexes and in ma- 
gnetic properties of mononuclear complexes over an 
exterided range of temperature. These have combined 
to direct attention on the phenomenon of antiferro- 
magnetism because of the spin-spin coupling inherent 
in most polynuclear systems and the weak residual 
coupling often found even for magnetically dilute 
materials at low temperature. The interpretation 
of this antiferromagnetic behaviour requires a suitable 
theoretical treatment based on a spin-coupled model. 
Spin-spin coupling is involved not only in the inter- 
pretation of magnetic susceptibility data but also in 
that of electron-spin and magnetic resonance measu- 
rements. 

In these latter a considerable number of situations 
have long been recognised and discussed in the lite- 
rature. Where a parallel exists, these are at once 
transferable mutatis mutandis to the interpretation of 
magnetic susceptibility results. However, not all spin- 
coupling arrangements which are needed for the 
static measurements are available in the literature on 
resonance methods, and in this paper we give the re- 
sults of calculation which are particularly appropriate 
to the former. In particular, we consider spin-coupled 
arrangements of magnetic centres arranged at the 
corners of regular or distorted polyhedra. We shall 
consider an effective Hamiltonian of the form 

H = $7 -J,,Si . S, (1) 

A positive J indicates ferromagnetic spin-exchange. 
System of spin 1/2 are discussed first and then some 

of the simpler systems of spin greater than one-half. 

Spin ‘/2 systems. For n-centres of spin 1/2 the basis- 
set contains 2” spin-functions, which, with the above 
Hamiltonian, leads to a 2”x2” secular determinant. 
This is already partially diagonalised, because the 
non-zero elements are restricted to the leading dia- 
gonal and those off-diagonal elements between 
basis functions of the same total spin. We note that 
the dimension of the blocks for the n-centre problem 

may be found from an appropriate binomial expan- 
sion. However, these blo&s are sufficiently largi to 
be difficult to solve in cases involving four or more 
centres, unless the problem is further simplified by 
consideration of the symmetry of the cluster. This 
simplification may be achieved readily, as we illustra- 
te by considering a tetranuclear cluster with a CZV 
symmetry. The basis set contains sixteen spin func- 
tions. 

4 

J12 = Js (short) 

J34 = JL 

J12 q J,4 = J23 = Jz4 = SM 

Figure 1. A Distorted Tetrahedron of C,, Symmetry 

Adopting a nomenclature for the basis set illu- 
strated by the following examples 

aa = PPPP, ad = aPaP, PI = apaa( ~a,~‘) 

the following blocks are obtained: 

<a”] <p”I 

1 aO>-$J.+J,+4J,) 1 B”)-+-~J~+J~+~J~) (2) 

I a’> J& ’ 
4 -5 1. 

-II 
2’ 

‘J 
7’ 

Id> -+J, 
I.-J, 4 -11 2’ ’ -T 1. 

(3) 
1 a’> -+I. -+J_ 

JrI. 
4 -1, 2’ 

I@‘> -+I. -+J. _+r, 
Irr. 

4 

and an analogous matrix for the pi’. 

(IT”‘> -y. -+’ ‘I ‘1 
J.+b 

T 0 -IJ 2’ 

-1 

2’. (4) 
I&.‘> .+I. -+1. 0 1.+ 1s 7 7 ‘1 --+I. 

Isf> -+I- 0 ‘1 ‘, Lp AJ. 
-+’ 7’ 

Id, 0 
4J.-J.-b 

-iJ -LJ +J. --+]-I- 7 
a- 2’ 
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The 4 x4 and 6~ 6 matrices may be diagonalised 
by eigenfunctions generated by symmetry using the 
GV character table. The z axis bisects the edges 12 
and 34 and we arrange the other axes so that 12 is 
parallel to the xz plane and 34 is parallel to the yz 
plane. 

For the a? functions the following orthogonal 
combinations are obtained. 

a’(A,), = 

a’(A,), = - ’ (a:+u4’) 
fi 

a’(&) = - * (a>*‘) 
6 

(5) 

a’(B,) = -~(a,,-a?) 
\/1 

Using these functions the 4x4 a,’ matrix diago- 
nalises partly to 

<aYAh( < a,(A,), 1 <a’(Bdj < al( 

(a’(A,),> =!$ -Jm 0 0 

1 a’(A,),> -Jm -J,-J. 
4 

0 0 (6) 

Ia’( 0 0 3J,-J, 0 
4 

I a’W> 0 0 0 3J,J, 
4 

The two eigenvalues arising from the a’(Ar) eigen- 
functions are obtained as solutions of 

-JrJ. E -JlU 
-- 

4 -J,-7. E = 0 (7) 
-_ 

-Jm 4 

whence 

E = -J,-J&J,. -J,-J.+4Jm 
4 ’ 4 

The roots of the secular equation may be used to 
obtain the eigenfunctions corresponding to these ei- 
genvalues 

aI(A + (all+a2’+af+d) E.= + (J,+ J.+4Jm) 

al(A, Jj-(al'+a21- a&cd) Eb= + (J, + J&J,) 

It is evident that ai( is the second component 

of a spin-multiplet 5A1 at energy E= -$(JI+ Js+4Jm). 
The components of these multiplets are connected 

by the spin-shift operators SC+) and S(_,. For exam- 
ple, it is readily shown that 

So+, = 1 .a,,+1 .a:+ 1 .a,l+l .a*’ = 2a’(A,), 

Thus when more than one symmetry function be- 
longs to the same representation, the normal func- 
tions are generated by means of the spin shift ope- 
raters*. 

The six ai{ functions give rise to the following 
symmetry functions 

a,(A,), = a,,, 

a,(A,), = af 

a*(A,), = +a,~+a,~+Qu’+a$) 

1 a’(A3 = -(a,,*-a,~*-aI,* + a$) 
2 

d(B,) = -$a112-a~4z+ a22-ad) 

a*( &) 1 = -_( a,,’ + alr'-a232--a242) 
2 

S~+,(a’(A,),) --3 a’(A,), = 
1 

&ar2'+a13*+a16'+ ad+ad+aw') = - 
G 6 

(a’(A,)t + a*(A,)z + 2a’(A,),) 

St+)(a’(A,)d --3 a*(A,h = 

(8) 

&all’-au’) = -f-(a,(A,),-Q,(A,),) 
* G 

and the third, orthogonal, az(A1) function is - a 
fi 

( 2_ 

(Ah + a*(&-a*(Add 

aTA,), = 
1 

-(2a,: + 2axz- a,~-a,,,-a,?- a$) 
m 

These 6 a& functions diagonalise the 6 X6 matrix. 
The final energies obtained are 

$A, +(J,+J,+4h) 

% + (3J,-J.) 

‘A, $ (4Jm-Jr-J,) 

‘B, + (3J.-Jr) 

‘A, + (aJm--7,-J,) 

‘A + (3J.+3J,) 

These are shown in Figure 2. 

(9 
-Js,.s, = --I (s,~%z,) + $ (s,(+,s,(-, + s,&(+,) 

where 
S ,+) = Sn+ is, 

S (_) = S,- is, 

Sk/M,.=& ~(S+M~+l)(S7M~))M,+I> 
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n=4 D,(square) II= 4 D&ectangle) 

J,z=Ju=JY=J,,=J~ JO= Ju= J,, Ju=JM=J. 

J,,=Jx=J, Jn=Jar=Jt 

SA, -Jc - &Jt 5A -+J,+J,+J~ 

We give below representations and eigenvalues for 
systems of 2 to 6 centres of spin 115 in various gee- 
metries, obtained in an entirely analogous manner.* 

n=2 

3x,+ 

Point group D 00 b 

-J 
4 

IL+ 3J 
4 

n=3 C, 

Ju=Ju=Jz Ju= J, 

‘A -J, --- : J2 4 

ZA” 3J, 
4 

‘A’ J2_JI 
4 

n=3 

‘A, 

n=3 

J,z=Ju=Jz 

Yz,+ 

D3 

J,z=J,a=Ju=J 

-3J 
4 

31 

‘B, +J, + +Jt - +J, 

‘B* +J. + -$Jt - $7, % J.-+Jt 

‘B, $1, 

,A, 2J, - +Jt 

4 

D=Q 

Jo= J, 

‘B, +Js + +J, -+J, 

‘AC., +(J~+J,+J~--F 

‘Aw +(J,+J,+J~+F -J, --- 
4 ; Jz 

35 
4 

where 

F = (I.‘+ J:+J:-J.J,-J.Jt-J,J$’ 

J2-L 
4 n=4 D&hombus) 

J,x= J. b=h 
J,z=Jz~=JH=J,.=J~ 

‘A -Jo - $J, - $L 

‘B, $-J, -+J. 

In the n = 3 (D& case if JI = 0, J2= J there is 
a quartet at -_MJ, and doublets at 0 and J. 

n=4 Td 

J,I=J,,=JM=Jz~=J~(=JH=J 

n=4 C,” 

Ju= J,l=J,,=J, 

b=Jw= J,=J, 
=A, -3J 

2 ‘B3 +J, - $J, 
SA, -$-J,-+J, 

‘T* 
‘A J. - $J, - $7, 

‘A’ $J, - $Js 
,E 3J 

4 ‘B, $7, + $J. 

‘A 2J. - $J, - +J, 

‘E 

‘E 

n=4 Ch 

J,z=J. b=J, 

J,a=J,,=Jz,=Ju=Jm 

‘A, -J+-J.-$J, 

A $J, - $7, 

>A, Jm - $J, - $J, 

‘Bl $J,-$J, 

‘A, 2J, - $7. - $J, 

‘Al $J‘ + +J, 

n=4 Dza 

Ju=Jw=Jz 

J,,=JM=Jz=Jw=JI 

SA, -JI - +b 

‘E $JZ 

)B* Jr +Jz 

‘B, $JZ 

,A, 2J, - +Jz 

‘A2 k (3J, t 3JL) 

‘A, % NJ, - Js - JL) 
A 

E 3b 
JAI 

l/4(3&-JL) 
h (4J,.,- Js- J,) 

“B, k (3J,- Js) 

54 -!i, (JstTLt4JM) 
(9 The symmetry labels describe only the spatial distribution of 

the spin vectors. Complete wavefunctions would in general be anti- 
symmetrised direct-product functions obtained by combination of these 
with orbital functions. A particular consequence of this nomenclature 
integral. 

Figure 2. Energy Levtls Arising from ferromagnetic spin- 
c;_..f.s&a” &Kfisar&._._ n.%..+..,%r ,d r..:” 1*. “_..,..“_A :‘. n 
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n =4 (Symmetric Trapezium) C, 

JU = Ja = JM, Js = Js 

JI, = JN = JT, JM = JL 

5A -+JI+JL+~J~+~J~) 

‘A 1 
-@Jra+zJr-JsJd 4 

,A‘. 3 Is+ J&Zk) 

‘A” $(J.+ JL+zk) 

‘A’ +Js+ JL+~JM+~J+ +k 

‘A $Js+JL+~JY+~JT)+ +k 

where 
k = 1H ((Js-JL)‘+(JM-JT) 1 

k’ = (JL~+J~+~J~‘+~J:+~JLJ~-~J~J~~J~J~~J~J~~JSJ~J~J~)~ 

n=4 Dooh 

J~=JY=JM Ja=k 
Ju=E=Jr JN= JL 

eigenvalues same as the case of the case of the SY~- 
metric trapezium, C,. 

II=5 c a=5 h It=6 a 
\ 

J.=J,,=I.=I.=I. Ju=Iu-J*=J.=J.=J.=I. J.=J”=J.=J”=I.=I.= 

JIl=I~=I~-I.=I. 1.=1.=1”=1. I*=J~=J.=I.=I.=I* 

1.=1.-I. Iu=I. IY=J.=I.=J~ 

-I.-Jr v ‘I I 

+I.+. 

I+.-+r~ 

fI.-I.-+Iil’ 

+I* 

I. + 319 

21. -‘iIs 

1.+1.-+I. 

‘A4 -fI.-+I.-)I* ‘Au 

‘U +J+J. T,. 

‘A,’ k-+I.-+J, ‘E, 

‘E fk-+I.+ 1; 

q.. )l,++I. lk 

‘e. 
*AAl' +r+-+I, ,A, 1 

‘E I. + fI+ ‘A* 

‘Tt. 

‘A* 

-sI.-+I* 

fl? I. 

_I 
41, 

+I. 

I. + +I% 

21.-3 
4 J* 

+I% 

21. + fJ% 

31. - fl, 

Spin greater than V2. This procedure can be ex- 
tended to centres of spin greater than Y/z. Whereas 
in the case of spin Vz the only off-diagonal elements 
which arise are of the form <r.$\lfia>, for S= 1 
off-diagonal elements may arise in three ways, so 
that 

<101101>, <-lOjlO-l> and <-llllOO> 

are all non-zero. 

For binuclear systems of S= Yzn, a(n+ l)‘y(n+ 1)2 
matrix is obtained which is already in block form 
for the basis set. There are two 1 x 1 matrices, two 
2 X 2 matrices... two n xn matrices and a central 

(n+ l)X(n+ 1) matrix. The eigenfunctions which 
diagonalise these blocks are readily obtained from 
the spin-shift operators. 

For more than two centres the complexity rapidly 
increase and it becomes necessary to use computa- 
tional methods of matrix diagonalisation. Eigenva- 
lues for two centres of S = 1/2n for n = 1 to 7 are 
well known. 

In general the ground state will be 4S.+ 1 dege- 
nerate in spin and of energy -(Si)*J. The higher le- 
vels descend regularly in multiplicity by two, at in- 
tervals of 2&J, (2Si_l)J, . . . . J, with the highest energy 
singlet at Si(Si+l)J. Thus if S’=O . . . 2Si is the 
component of spin-momentum being considered, this 
has multiplicity 2S’+ 1 and its energy is ti J(S’(S’+ 1)) 
above that of the ground state. 

Symmetry determined eigenvalues for n-centres of 
spin 1 

n=3 S=l D, n=3 s-1 C. 

Ju=JI,=J==J J,>=b=b Jl>=J, 

‘Al -3J ‘A’ -~Jz-J, 
“E 0 sA’ Ji-J, 
‘E 2J 5A” J,-b 
aAA1 2J ‘A’ 2J1 
‘Al 3J ‘A’ 3JrJ,* 

,A” JI+Jz 
IA” ~Jz+ JI 

n=3 S=l D=h 

Ju=Ju=Jz Jn= JI 

the energy levels are the same as for the isosceles 
triangle, C,. 

(* ‘A is the ground state for Jr=O, J2 negative) 

n=4 S=l Td 

Ju=JI,=J,,=Jz,=J~=J~=J 

=A, --6J 
‘T* -2J 
‘A, 
5E f 
5T, J 
T* 3J 
‘T, 3J 
‘A, 4J 
‘E 4J 

The energy levels show extensive accidental dege- 
neracy in this case. 

We finally consider the effect of the pattern of 
energy levels on the calculated magnetic properties. 
The molar susceptibility XM of a compound is nor- 
mally calculated from the Van Vleck relationship.’ 

N 2 [E”&t)1z + 2E.,(2) exp(-E.(O)/kT) 
( \ 

xr = zW.exp(-E.(O)/kT) (9) 

where the energy of the nth level, of degeneracy W,, 

(I) B. N. Fig&. J. Lewis in << Progress in Inorganic Chemistry w 
ed. F. A. Cotton, 6, 37. 
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in the presence of an external field H is given by 

E.(O) + E,,( 1V-i + End2W (10) 

and N, k, T have their usual significance. It should 
be noted that the term in HZ arises from mixing of 
the energy levels by the magnetic field itself and 
contributes the temperature-independent part of the 
susceptibility. It cannot be calculated using the pre- 
sent approach and so an arbitrary correction, Na, 
has to be made for it. 

It follows that the temperature dependence of the 
molar susceptibility of a binuclear complex with 
spin l/z at each centre is given by the relationship 

2&N@ 1 
Xm = ~ 3kT 1 + t exp(J/kT) 

+Na (11) 

For the more complex cases, a susceptibility equa- 
tion is derived in the same way. 

The first-order Zeeman effect is to split each spin- 
multiplet into its 2S+ 1 component levels, ranging 
in energy from -g@HS to +g@HS. 

Thus we obtain the well known formula 

Ng,P 2 S&L+1)(2S,+ l)e- I.iO,RT 
-- 

‘m - 3kT +Na (12) 
72S.f l)euo’m 

By substitution of fundamental constants, 

N[3’/3k = 0.1251 c: + 

For example, for four centres of spin l/2 arranged 
in a tetrahedron, there is a quintet at 0, a nonaplet 
at +2 J which consists of 3 degenerate spin-triplets, 
and a degenerate pair of singlets at +3T, leading to 

g’ =- 
81 + Na 

and 

(13) 

Whilst for four centres of spin 1/2 in a CL-distorted 
tetrahedron 

30+6(xy+t+xz) 
5+3(xy+x’+xz)+(x’+xY~) 

+Na (14) 

where 

x = e~“/~’ y = e"P . z = eVkT 

(2) B. N. Figgis, R. L. Martin, \. Chem. Sot., 3837 (1956). 

It should be noted that the Van-Vleck approxima- 
tion may break down at very low temperatures, when 
co-operative magnetic phenomena are observed for 
most compounds although there may be simplifying 
features for systems of spin > t/2. This is because 
many antiferromagnetic materials form a magnetically 
ordered lattice on cooling. The symmetry properties 
of this lattice are described’ by a magnetic space 
group, which includes spin-reversal as a basic ope- 
ration. Thus such a lattice consists of ions whose 
spin angular momentum with respect to a given axis 
is restricted to rt Sj, the eigenvalues obtained in this 
case being related to those obtained for S= t/2 by 
the simple factor 4Sj’. Exploitation of such sym- 
metry offers real hope of simple calculations on anti- 
ferromagnetic materials at low temperatures. Fur- 
ther many antiferromagnetic materials show high 
symmetry so that the number of symmetry-related 
magnetic centres in the unit cell is usually quite 
small. 

The known ferromagnetic and antiferromagnetic 
polynuclear complexes have recently been reviewed 
by Martin.4 In general it is necessary to adopt a 
4 best-tit >> procedure to determine the values of the 
several coupling constants in equations such as (14) 
describing the susceptibility. When, however, a CU- 
rie point, has been observed for a ferromagnetic sub- 
stance, or a NCel point for an antiferromagnetic sub- 
stance, the procedure may be made a little more rigo- 
rous by requiring that 

3X 

-F=O at T,(TN) (15) 

We may obtain a general expression for this se- 
cond equation by differentiation of equation (12). 

z” S&S,+ 1)(2S,+ l)e-rAo”kr 

X(2$+ l)e-EAo”kr 
)- 

- +(xm-Na) (16) 

For example, differentiating equation (11) we obtain’ 

((J/kTA-1) exp (J/kT,) = 3 (17) 

whence 

J2:1.6kT, 
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