Contribution from the Department of Chemistry, University of Montreal, Montreal 250, Quebec, Canada

Ethylene or Carbonyl Platinum(U) Glycine Complexes

T. Theophanides

Received Iannuary 20, 1970

The preparaiion and bond properties of platinum glycine complexes with ethylene or carbon monoxide and their i.r. spectra are reported. The platinumolefin interaction is also discussed.

Introduction

Panunzi et al.¹ reported some monochloro-aminoacid olefin platinum(I1) complexes of the formula $[PtCl(ol)(NH₂CHRCOO)]$, where ol = olefin and $R =$ phenyl, and they proposed a monomeric structure in which the NH2 of the amino acid is *trans* to the olefin. Later^{2a} Kieft and Nakamoto also reported the complexes independently. The nitrogen bases are stronger than the oxygen bases and the amino group reacts preferentially with the more labile chlorine *trans* to the olefin in Zeise's type salts.

In this paper we have prepared the ethylene com- plex with glycine reported by the above mentioned authors as well as the carbonyl analog of the ethylene complex, *i.e.*, [PtCl(CO)(NH₂CH₂COO)] and have obtained the i.r. spectra of the deuterated species, $[PtCl(C₂H₄)(ND₂CH₂COO)]$ and $[PtCl(C₂D₄) (ND_2CH_2COO)$], where the ethylene molecule was partially deuterated.

The low frequency i.r. spectra $(600-200 \text{ cm}^{-1})$ of these complexes aided us to determine their structures. The carbonyl analog gives much simpler i.r. spectra and helps greatly in the assignment of the frequencies. The i.r. assignment for the undeuterated glycino ethylene complex was reported by Kieft and Nakamoto.²⁴

Experimental Section

Preparation of the compounds. 1. [PtCl(C₂H₄)- (NH_2CH_2COO)]. This compound was prepared according to the procedures given by Panunzi *et al.,' i.e.,* reaction of Zeise's salt with the potassium salt of glycine. The precipitate was washed with water and dried. The yellow solid was crystallized from methanol and decomposed at 156". The compound presented the carateristics of the salt prepared by Panunzi *et. al.'* and its spectrum was identical to that given by Kieft and Nakamoto.^{2a}

2. $[PtCl(C₂H₄)ND₂CH₂COO)]$. The $-ND₂$ deuterated complex was obtained by storing the undeuterated complex in a dessicator in the presence of D_2O . However, ethylene also exchanges to form a little of $[PtCl(C₂D₄)(ND₂CH₂COO)]$. Complete $-ND₂$ deuteration was obtained by reacting Zeise's salt with the deuterated glycine salt, $ND₂CH₂COOK$ obtained by recrystallizing the glycine salt in D_2O several times.

3. [PtCl(CO)NHzCH2COO)]. The carbonyl complex was prepared by reacting the ethylene analog with carbon monoxide:

The above reaction takes place in half an hour. The carbon monoxide passing through the suspension of $[PtCl(C₂H₄)(NH₂CH₂COO)]$ dissolved the solid. By slow evaporation of the ether the carbonyl complex precipitated out. m.p. with decomp. 186°C. (Found: C, 10.64; H, 1.4; N, 4.45; Pt, 58.18. $C_3H_4CINO_3Pt$ requires: C, 10.85; H, 1.2; N, 4.20; Pt, 58.6).

The i.r. spectra were observed with a Perkin-Elmer 621 double-beam infrared spectrophotometer in the 4000-200 cm-' region. KBr, CsI disks and nujol or hexachlorobutadiene techniques were employed to record the spectra in the above region using KBr and CsI plates. Calibration of the frequency region was made with water vapor, carbon dioxide vapor and a polystyrene film. Positions of bands are occurate to within ± 2 cm⁻¹.

Results and Discussion

The i.r. spectra of $[PtCl(C₂H₄)(NH₂CH₂COO)]$, (A) $[PtCl(C₂H₄)(ND₂CH₂COO)]$ (-ND_z-deuterated) (B) and the carbonyl analog, $[PtCl(CO)(NH₂CH₂)]$

⁽¹⁾ A. Panunzi, R. Palumbo, C. Pedone, and G. Paiaro, *J. Orga*
nometal. Chem., 5, (1966).
(2) (a) [. A. Kieft and K. Nakamoto, *J. Inorg. Nucl. Chem.*, 29
2561 (1967); 30, 3103 (1968); (b) M. J. Grogan and K. Nakamoto
J

C_2H_4 $\mathbf O$	C ₂ H ₄ $\mathbf O$	CO $\mathbf O$	
P _t $C = Q$	$C = O$ Pt	Pŕ $C = 0$	Assignment
NH ₂ CI	CI ND ₂	NH ₂ C1	
3208 vs		3108 vs	v_{as} N-H str.
3117 ys		3078 s	v. N-H str.
	3087 m		v_{as} -C-H str. C_2H_4
3001 m	3001 m		v_s C-H str.
2970 m	2975 w	2975 m	$v_{\rm as}$ C-H str. gly
2950 m	2950 w	2930	v_s C-H str.
2774		2641 m	
		2595 m	combination
		2390 m	
	2410 s (1.34)		$v_{\rm as}$ N-D str.
	2365 sh		
	$2300 s$ (1.35)		v_s N-D str.
		2134 vs	v(CO)
		2123 vs	
		2077 m	
1640 vs	1638 vs	1647 vs	$vC = O$ str. (COO)
1600		1596 vs	δNH_2 def.
1567 ms			
1526 m	1526 m		vC-C str.
1436 ms	1436 m		δ CH ₂ def.
1421 s	1420 m	1421 ms	δs CH ₂ def.
1360 vs	1350 vs	1351 ms	$vC = O$ str. (COO)
1307 s	1307 s	1306 s	CH ₂ twist.
1257 m	1257 m 1248 m	1286 sh	$CH2$ rock.
1190 s	862 s (1.35)	1204 s	
	1194 w		$NH2$ and $ND2$ twist.
1153 s	1165 w		
1032 m	1033 m	1027 m	
1017s	1016s		ν C-N str. and CH ₂ wag.
1000 m	1000 m		
952 s	952 m	958 s	\sqrt{C} = C str. and CH_2 rock.
917 s	862 s (1.35)	920 s	$NH2$ and $ND2$ wag.
824 m	823 m		CH ₂ rock.
769 m	576 s (1.35)	780 s	NH ₂ twist. and $\pi C = O$
735 _m	749 m	730 m	$CH2$ twist.
587 s	576 s	608 _s	$\pi C = O$
543 m	510 w	531 m	vPt--N str.
499 s			$NH2$ rock.
478 m	480 s	478 s	$vPt-C str.$
405 s	404 s	401 s	vPt –O str.
382 m	383 s		$vPt-C str.$
362 vs	362 vs	361 vs	vPt--Cl str.
	354 sh	355 sh	
290 m	290 m	294 m	OCCN trs.

Table I. I.R. Frequencies of Some Glycine Platinum(H) Complexes with ethylene or carbon monoxide (cm-')

s, very strong; s, strong; m, medium; ms, medium strong; sh, shoulder; w, weak; str, stretching; as, assymetric; s, symmetric; def., deformation; twist., twisting; rock., rocking; wag., wagging; xC=O, out of plane bending; **trs., torsion.**

COO)] (C) are shown in Figure 1. In Table I are given the absorption maxima and their assignment is shown in the last column.

Previous work^{$2,3,4,5$} on platinum ethylene complexes of Zeise's type aided us in reaching the assignments given in the last column of Table I. The substitution of ethylene by carbon monoxide in the complexes was also essential for our discussion on the metaldouble bond interaction and the ethylene assignments. The spectra of the carbonyl analog are simpler in the finger print region and only the chelated glycine absorptions are observed. The carbonyl complex gives three strong and sharp absorptions at

(3) J. Pradilla-Sorzano and J. P. Frackler, Jr., J. Mol. Spectro-
copy, 22, (1967).
(4) H. P. Fritz and D. Sellmann, J. Organometal. Chem., 6,
(5) P. C. Kong and T. Theophanides, Can. Spectroscopy, 14, 104
(5) P. C. Kong a

2134, 2133 and 2077 cm^{-1} (see Figure 1). The carboxy1 absorptions of the glycine molecule in the complexes are observed at 1647 and 1637 cm^{-1} for the carbonyl and ethylene complexes respectively (see Table I). The carboxyl absorption occurs at 1820 cm^{-1} in the free glycine molecule and is shifted on complexation. This assignment is the same as in he previous work.^{2a} The deuteration of the $-NH_2$ groups of the ethylene complex is essential to separate the $CH₂$ absortpions from those involving the $NH₂$ groups. The strong band at 499 cm⁻¹ is assigned to the $NH₂$ rocking frequency on the basis of the deuteration data. This band is sensitive to deuteration and it is completely removed on deuteration of the NH_2 groups $(-ND_2)$ in the complex see

(6) A. A. Babuskin. L. A. Gribov. and A. D. Gel'man, *Russ. J. Znorg. Chem.,* **4, 695 (1959).**

Figure 1 and Table I. The removal of the 499 cm⁻¹ band allows also the observation of the v_{Pt-N} absorption of the $[Pt(C₂H₄)(ND₂CH₂COO)]$ at 510 cm⁻¹ lowered on deuteration of the $-NH_2$ groups from 542 cm⁻¹ for the $[Pt(C₂H₄)(NH₂CH₂COO)]$. The v_{Pt-N} assignment is in agreement with that given by Kieft and Nakamoto^{2a} in these complexes. However, the absorptions near 1190-1160 cm^{-1} are NH₂ absorptions, as well as the absorption at 917 cm^{-1} and 769 cm⁻¹ (see Table I).

ifrared spectra of the complexes. A. [PtCl- C_2H_4)(NH2CH2COO)] in KBr pellel. B. [PtCl(C2H4)(ND2CH2 COO)] in KBr pellet. C. [PtCl(CO)(NH,CH,COO)] in Csl pellet. Samples of 3-4 mg per 200 mg of alkali halide were used.

The platinum-carbonyl and platinum-ethylene aborptions were carefully examined in the region 600- 200 cm^{-1} :

$$
-Pt-C=O \quad \text{and} \quad -Pt-C_2H.
$$

In the carbonyl complex three bands are observed at 531, 511 and 478 cm^{-1} . These bands can be tentatively assigned to v_{Pt-N} , v_{Pt-C} and δ_{Pt-C} respectively." The highest and weakest band being assigned to the Pt-N vibration. The strong band at 401 cm⁻¹ is assigned to v_{Pt-O} frequency (see Table I), by comparison with the ethylene complex. In the ethylene complexes, absorptions due to the cyclic unity,

are observed at 481 cm⁻¹, 383 cm⁻¹, and at 480 cm⁻¹, 382 cm^{-1} for the $[PtCl(C₂H₄)(NH₂CH₂COO)]$ and $[PtCl(C₂H₄)(ND₂CH₂COO)]$ complexes respectively (see Table I and Figure 1). These two bands on deuteration of the ethylene in the complex (partial deuteration) are shifted to 436 and 366 cm^{-1} respectively. In a series of compounds of the formula $[X_2C_2H_4]$ Pt- $(NH_2CH_2CH_2NH_2)Pt(C_2H_4)X_2$, with $X=Cl$ and Br two bands were also observed approximately in the same region and are assigned to the Pt-C vibrations on the basis of deuteration data.⁵ The two bands are shifted to 435-440 and 365 cm^{-1} respectively on deuteration of the ethylene molecule in the complex.

The unit $PtC₂$ gives three valence vibrations, two Pt-C in the region $370-600$ cm⁻¹ and one C-C vibration in the region 1000-16000 cm^{-1} depending on the interaction of the double bond with the metal. This cyclic structure was considered earlier by Babuskin et *aL6* who presented spectral arguments in support of it. The Dewar-Chatt-Duncanson representation of the bonding in olefin complexes and its extension to acetylene complexes explained the general properties of these complexes with considerable success. However, spectroscopic data on the metal-olefin interaction is not conclusive.

X-ray data on the metal-olefin π -complexes^{7,8} show the bond order of the $C = C$ in the complexes to be reduced to $1\frac{1}{2}$ from 2 on complexing of the free ethylene. The metal-olefin bond is approximately a symmetrycal π -type bond. The C=C distance is increased from 1.34 A to 1.44 A on complexing. This implies a certain amount of additional p caracter in the sp² hybrid of the two carbons, *i.e.*, sp²-sp³, which in turn implies a degree of covalency of the two carbon atoms with the metal.

The representation of the platinum-olefin interaction as follows:

with a weak overlap of the platinum orbitals and the π bond of the olefin could not justify a covalent Pt-C frequency in the region 400 cm^{-1} . This representation would mean the movement of a metal atom against a molecule. This type of vibration is similar to a lattice mode and should be observed at very low frequencies 100-50 cm-'. The Dewar-Chatt-Duncanson model clearly implies covalent bonds between the metal and the two carbon atoms. The metal-olefin interaction could also be considered in terms of molecular orbitals as a three-center PtC_2 orbital resulting from the combination of atomic orbitals of the two carbon atoms and the metal atom.¹² If the platinum atom, however, is covalently bound to the two carbon atoms and obviously it is, the vibrations of the three

(10) M. Black, R. H. B. Mais, and P. G. Owston, Acta Cryst., 25, 1753 (1969).
(11) R. G. Denning, and M. J. Ware, Spectrochim. Acta, 24A, 285 (1968).
(11) R. G. Denning, and M. J. Ware, Spectrochim. Acta, 24A, 285 (1968).

The Pt-Cl bonds absorb in the region $350-360$ cm⁻¹

which is higher than the normal platinum-chlorine absorption region (335-345 cm⁻¹). This might be due to the very low *trans* effect of oxygen.

Acknowledgment. We wish to thank the National Research Council of Canada for financiar support.