Pyrazolate-bridged Binuclear Copper(II) Complex with Diethylenetriamine

W. MORI, T. SAKURAI, A NAKAHARA

Institute of Chemistry, College of General Education, Osaka University, Toyonaka, Osaka 560, Japan

and Y. NAKAO

Chemical Laboratory, Faculty of Education, Okayama University, Okayama 700, Japan

Received March 17, 1982

A number of papers have been published [1] reporting preparations and characterizations of binuclear metal complexes bridged by imidazolate anion (im), in view of their importance as structural models for the active site of bovine erythrocyte superoxide dismutase [2]. For these complexes, we have already pointed out that both the Cu-N-(imidazolate)–C(imidazolate) angle (α) and the angle (θ) between the Cu-N(imidazolate) vectors are important factors in determining J values (i.e., parameter in spin Hamiltonian $-2JS_1 \cdot S_2$ [1n]. On the other hand, there has been continuing interest in the synthesis of metal complexes bridged by pyrazolate anion $(C_3H_3N_2)$, abbreviated pz) [3-7]. However, binuclear copper(II) complex bridged by only one pyrazolate ion has not been reported so far. In this paper, we report the preparation and magnetic properties of the pyrazolate-bridged binuclear copper(II) complex, [Cu2(dien)2(pz)]Br3. H₂O, 1.

To a mixture of 0.89 g (4 mmol) of $CuBr_2$ and 0.41 g (4 mmol) of diethylenetriamine in 20 ml of methanol were added a methanol solution contain-

ing 0.41 g (2 mmol) of pyrazole and 0.08 g (2 mmol) of sodium hydroxide. The reaction mixture was then stirred at room temperature for half an hour, being allowed to stand for several hours in a refrigerator. Blue crystals were deposited, which were filtered and recrystallized from methanol. *Anal.* Found: C, 20.13;

0020-1693/82/0000-0000/\$02.75

Fig. 1. The temperature-dependence of magnetic susceptibility of copper(II) complex 1. The solid line shows theoretical susceptibility calculated by Bleaney-Bowers equation $\sum_{i=1}^{2} a_{i}^{2}$

$$\chi_{\mathbf{A}} = \frac{Ng \ \beta}{kT} \times \frac{1}{3 + \exp(-2J/kT)} + N\alpha$$

with g = 2.18, 2J = -43 cm^{-1} , N $\alpha = 60 \times 10^{-6} \text{ cgs}$ emu.

Fig. 2. X-band ESR spectra of powdered samples of $[Cu_2-(dien)_2(pz)]Br_3 \cdot H_2O(a)$ and $[Cu_2(dien)_2(im)](ClO_4)_3$ (b).

H, 4.63; N, 16.90%. Calcd. for $[Cu_2(C_{11}H_{29}N_8)]$ -Br₃·H₂O: C, 20.07; H, 4.75; N, 17.02%.

The magnetic moment, μ_{eff} value, which was determined at 25 °C by using a Gouy magnetic apparatus, was found to be 1.84 B.M. Figure 1 represents the temperature-dependence of the magnetic susceptibility. The values of magnetic susceptibility agree well with the theoretical ones calculated by Bleaney-Bowers equation, supporting the dimerstructure as represented in 1. This complex exhibits antiferromagnetic interaction (J = -21.5 cm⁻¹)

© Elsevier Sequoia/Printed in Switzerland

that is somewhat weaker than that observed $(J = -30 \text{ cm}^{-1})$ for the corresponding imidazolate-bridged copper(II) complex, $[Cu_2(dien)_2(im)](ClO_4)_3$ [1e]. The powder X-band ESR spectra of these complexes at room temperature were recorded and the reproductions are shown in Fig. 2. As is clear from Fig. 2, the spectrum for $[Cu_2(dien)_2(im)](ClO_4)_3$ exhibits a broader line shape than that of the complex *I*. In addition, the half-field absorption in the $\Delta M_s = 2$ region was not observed for both the pyrazolate-and imidazolate-bridged complexes.

Spectral data in the visible region for solid samples of the complex I and $[Cu_2(dien)_2(im)](ClO_4)_3$ are listed in Table I, which shows that the d-d band of I is observed at a longer wavelength than that of $[Cu_2(dien)_2(im)](ClO_4)_3$.

TABLE I. Electronic Spectra of Copper(II) Complexes.^a

Complex	λ _{max} , nm
$[Cu_2(dien)_2(pz)]Br_3 \cdot H_2O$	610
$[Cu_2(dien)_2(im)](ClO_4)_3$	560

^aMeasured in nujol mull.

Acknowledgment

We thank Mr. T. Kawamura for technical assistance.

References

- 1 (a) G. Kolks, C. R. Frihart, H. N. Rabinowitz and S. J. Lippard, J. Am. Chem. Soc., 98, 5720 (1976);
 - (b) G. Kolks and S. J. Lippard, *ibid.*, 99, 5804 (1977);
 (c) Chi-L. O'Young, J. C. Dewan, H. R. Lilienthal and S. J. Lippard, *ibid.*, 100, 7291 (1981);
 - (d) M. S. Haddad and D. N. Hendrickson, *Inorg Chem.*, 17, 2622 (1978);
 - (e) M. S. Haddad, E. N. Duesler and D. N. Hendrickson, *ibid.*, 18, 141 (1979);
 - (f) Y. Nakao, W. Mori, N. Okuda and A. Nakahara, Inorg. Chum. Acta, 35, 1 (1979);
 - (g) W Mori, A. Nakahara and Y. Nakao, *ibid.*, 37, L507 (1979);
 - (h) M. Suzuki, H. Kanatomi, H. Koyama and H. Murase, *ibid.*, 44, L41 (1980);
 - (i) J. C. Dewan and S. J. Lippard, *Inorg. Chem*, 19, 2079 (1980);
 - (j) R. N. Katz, G. Kolks and S. J. Lippard, *ibid.*, 19, 3845 (1980);
 - (k) Y. Nakao, W. Mori, T. Sakurai and A. Nakahara, Inorg. Chim. Acta, 55, 103 (1981);
 - (i) W. M. Davis, J. C. Dewan and S. J. Lippard, Inorg. Chem., 20, 2928 (1981);
 - (m) G. Kolks, C. R. Frihart, P. K. Coughlin and S. J. Lippard, *ibid*, 20, 2933 (1981);
- (n) K. Matsumoto, S. Ooi, Y. Nakao, W. Mori and A. Nakahara, J. Chem. Soc. Dalton, 2045 (1981).
- 2 J. S. Richardson, K. A. Thomas, B. H. Rubin and D. C. Richardson, Proc. Nat. Acad. Sci. U.S.A., 72, 1349 (1975).
- 3 C. G. Barraclough, R. W. Brookes and R. L. Martin, Aust. J. Chem., 27, 1843 (1974).
- 4 J. G. Vos and W. L. Groeneveld, Inorg. Chim. Acta, 24, 123 (1977).
- 5 B. F. Fieselmann and G. D. Stucky, Inorg. Chem., 17, 2074 (1978).
- 6 C. Mealli, C. S. Areus, J. L. Wilkinson, T. J. Marks and J. A. Ibers, *J Am. Chem. Soc.*, 98, 711 (1976).
- 7 W. C. Deese, D. A. Johnson and A. W. Cordes, Inorg. Chem., 20, 1519 (1981).