N-Methylbipyridylium Complexes: Synthetic Evidence for a Monodentate Intermediate in the Formation of Chelated 2,2'-Bipyridyl Complexes

SMITA DHOLAKIA, ROBERT D. GILLARD* and FRANZ L. WIDMER**

Department of Inorganic Chemistry, University College, P.O. Box 78, Cardiff, CF1 1XL, UK.

Received March 20, 1981

The ligand 2,2'-bipyridyl (bpy) can be considered to be intermediate in flexibility between 1,2-diaminoethane and 1,10-phenanthroline. Although there are numerous examples of 1,2-diaminoethane behaving as either a monodentate [1] or as a chelating ligand, there are no examples [2, 3] of a complex containing a monodentate bpy group. However, species containing a monodentate bpy have been postulated [4] as intermediates in the aquation of $[Fe(bpy)_3]^{2+}$ and such a species is observed in the reaction of bpy with $[Al(Me_2SO)_6]^{3+}$ [5].

can be converted into a potential Bov monodentate ligand by quaternising one of the nitrogen atoms. The resulting cation should still be capable of coordination since it has been shown that neither the presence of a positive charge on a ligand [6] nor a bulky substituent in the 2-position of a pyridine (e.g. 8-methylquinoline [7]) prevents coordination to the appropriate metal ion.

We report the preparation of stable N-methylbipyridylium complexes of some of the first-row transition metals. These are the first complexes to unequivocally demonstrate that bpy is sterically capable of behaving as a monodentate ligand.

N-methylbipyridylium iodide, [bpyMe]I, was prepared by heating under reflux equimolar quantities of bpy and iodomethane in 1-butanol for 3 h. The monomethyl salt was separated from the N,N'dimethyl salt, $[bpyMe_2]I_2$, and unreacted bpy by extraction into and subsequent recrystallisation from hot ethanol. $[bpyMe]X (X = Cl, NO_3, ClO_4)$ were prepared by the appropriate metatheses.[†]

The mixture of hot ethanolic solutions containing Li_2MCl_4 (M = Co, Cu) (1 mol) and [bpyMe]Cl (2-3) mol) gives, on cooling, crystalline precipitates with the composition M(bpyMe)Cl₃. These compounds (where M = Co, Cu, Zn) can be prepared directly by mixing hot ethanolic solutions containing equimolar quantities of [bpyMe]Cl and the hydrated metal(II) chloride. $Co(bpyMe)X_3$ (X = I, NO₃) were prepared similarly from CoX₂ and [bpyMe]X. There was no precipitate with $N_1Cl_2 \cdot 6H_2O$ and the solution had to be evaporated to dryness to obtain Ni(bpyMe)-Cl₃.

The compounds are stable in dry air, but slowly absorb moisture when exposed to the atmosphere except Ni(bpyMe)Cl₃ which is deliquescent. They are insoluble in non-polar solvents, soluble to varying degrees in acetonitrile and nitromethane and decompose in dimethylsulphoxide and water.

The infrared spectrum of the [bpyMe]⁺ ion can be regarded as a composite of the spectra of a 2substituted-pyridine and -N-methylpyridinium ion, [pyMe]⁺, respectively. On complex formation the part due to the [pyMe]⁺ ion should remain fairly constant while the part due to the pyridine moiety should show characteristic changes. These are [8] (a) a shift in the ring-stretching mode at 1578 cm^{-1} to 1600 cm^{-1} and (b) shifts of the bands at 601 and 403 cm⁻¹ to higher wavenumbers.

The ring-stretching modes ($\nu_{C=C}$, $\nu_{C=N}$) of bpy are at 1578 and 1557 cm⁻¹. On mono N-methylation these change to 1628, 1578 (broad) and 1568 cm⁻¹ as expected for a molecule containing both a pyridine $(1578 \pm 5, 1565 \pm 5 \text{ cm}^{-1})$ [9] and a [py-Me]⁺ (1632, 1581 cm⁻¹) [10] ring. In the spectra of the $M(bpyMe)X_3$ compounds (Table I) these bands remain relatively unaltered while the new band at 1600 cm⁻¹ is indicative of complex formation through the pyridyl nitrogen atom.

The band at 601 cm⁻¹ for pyridine is replaced by a band at 647 cm⁻¹ for the [pyMe]⁺ ion. However, the two bands observed for the [bpyMe]⁺ ion (648, 607 cm⁻¹) cannot be regarded unequivocally as the summation of these two bands since bpy also shows two bands (655, 618 cm^{-1}) in this region. The latter band is sensitive to complex formation and shifts to higher frequency in the [bpyMe]⁺ complexes, as does the corresponding band in both pyridine [8] and bpy complexes [11].

The two bands for the [bpyMe]⁺ ion at 448 and 407 $\rm cm^{-1}$ appear to be the composite of the single bands for pyridine and [pyMe]⁺ at 406 and 446 cm⁻¹ respectively since bpy only shows one band at 406 cm^{-1} . The band at 407 cm^{-1} shows the expected shift to higher frequency on coordination, while the band at 448 cm⁻¹ is hardly affected (see Table I). The metal-chloride stretching modes are

© Elsevier Sequoia/Printed in Switzerland

^{*}Author to whom correspondence should be addressed.

^{**}Present address: School of Natural Resources, Univer-

sty of the South Pacific, P.O. Box 1168, Suva, Fiji. $^{+}X = Cl^{-}$, ion-exchange chromatography with Amberlite IRA400 (chloride form); $X = NO_3$, treatment with AgNO₃ in water; $X = ClO_4$, treatment with LiClO₄.

Compound	Colour	Infrared 5	Spectrum ^b								ν _{M-X} (cm ⁻¹)
		Selected	[bpyMe] ⁺ band	ls (cm ⁻¹)							
L°	white	1627s	1	1578m	1567m	648w	607w	448w	407.wm	1	1
CoLC1 ₃	bright blue	1633s	1602s	1583m	1570m	652m	643m	443m	427s	332sh	320s
NiLCI ₃	deep blue	1627s	1600s	1583s	1570m	650wm	643m	443m	425m	327s	308s
CuLCl ₃	yellow	1627s	1600s	1583m	1571m	651wm	646s	442m	427w	1	305s,br
ZnLCl ₃	white	1632s	1600s	1583m	1570m	651wm	640s	443m	423s	318s	303s
CoLI ₃	green	1629s	1600s	1583s	1570m	652wm	643m	442m	423m	I	1
CoL(NO ₃)3 ^d	purple	1630s	1602s	1587s	1572m	652w	643s	443m	426s	ca. 3	00s

observed at approximately 300 cm⁻¹. Either two or three modes are expected depending on the approximation $(C_{3\nu}, C_{5}, C_{1})$ used for the symmetry of the complex. Two distinct bands are present together with a number of shoulders, except for the copper complex which shows only one broad band. There is also a medium-intensity band at 285 cm⁻¹ in the spectra of the chloro complexes. The cobaltoxygen stretching modes in Co(bpyMe)(NO₃)₃ are assigned to the broad bands in the region 300- 280 cm^{-1} .

In the reaction of the $[MCl_4]^{2-}$ ions with bpy a reactive intermediate with a monodentate bpy group, *i.e.* [M(bpy)Cl₃]⁻, is presumably formed prior to the ring-closure to give M(bpy)Cl₂. The structure of this intermediate should be similar to that of the M(bpy-Me)Cl₃ complexes. The latter compounds, apart from being inorganic Zwitter-ions can be thought of as trapped intermediates in the familiar reaction of bpy with metal ions to give chelated complexes.

References

- 1 See, for example, R. Romeo, S. Lanza and M. L. Tobe, Inorg. Chem., 16, 785 (1977);
- M. D. Alexander and C. A. Spillert, Inorg. Chem., 9, 2344 (1970);
- M. J. Carter and J. K. Beattie, Inorg. Chem., 9, 1233 (1970).
- 2 A monodentate bipyridyl complex may be one of the products of the aquation of cis-[Cr(bpy)₂(H₂O)Cl]² as evidenced by ion-exchange chromatography. S. Y. J. Ng and C. S. Garner, Inorg. Chim. Acta, 5, 365 (1971).
- 3 The only potential example of a complex containing a monodentate bpy group, νiz . Ir^{III}(bpy)₃Cl₃·4H₂O, has been shown to have all three bpy groups chelated to the metal. W. A. Wickramasinghe, P. H. Bird and N. Serpone, J. Chem. Soc. Chem. Commun., 1284 (1981).
- 4 F. Basolo, J. C. Hayes and H. M. Neumann, J. Am. Chem. Soc., 76, 3807 (1954); F. Basolo and R. G. Pearson, 'Mechanisms of Inorganic
- Reactions', John Wiley, New York (1967), 2nd ed., p. 218.
- 5 A. J. Brown, O. W. Howarth, P. Moore and W. J. E. Parr, J. Chem. Soc. Dalton Trans., 1776 (1978).
- 6 W. D. Perry, J. V. Quagliano and L. M. Vallarino, Inorg. Chim. Acta, 7, 175 (1973);
- L. M. Vallarino, V. O. Goedken and J. V. Quagliano, Inorg. Chem., 10, 2682 (1971); ibid., 12, 102 (1973), and references contained therein.
- 7 A. J. Deeming, I. P. Rothwell, M. B. Hursthouse and L. New, J Chem. Soc. Dalton Trans., 1490 (1978);
- A. J. Deeming and I. P. Rothwell, Inorg Chim. Acta, 31, 271 (1978);
- Pure Appl. Chem., 52, 649 (1980);
- J. Chem. Soc. Dalton Trans., 1259 (1980). 8 N. S. Gill, R. H. Nuttall, D. E. Scaife and D. W. A. Sharp,
- J. Inorg. Nucl. Chem., 18, 79 (1961). 9 N. S. Gill and H. J. Kingdom, Austral. J. Chem., 19,
 - 2197 (1966)

- 10 E. Spinner, Austral. J. Chem., 20, 1805 (1967).
- 11 J. S. Strukland and J. L. Walter, Spectrochim. Acta, 27A, 223 (1971).