SUBHI AL-JIBORI and BERNARD L. SHAW*

School of Chemistry, The University, Leeds LS2 9JT, U.K.

Received June 15, 1982

Introduction

We have shown that Ph₂ PCH₂ PPh₂(dppm) substituted Group VI metal carbonyls, [M(CO)4-(dppm)], are deprotonated by strong bases such as MeLi or BuⁿLi and the resultant carbanions, [M(CO)₄(Ph₂PCHPPh₂]⁻, are readily alkylated or acylated to give derivatives. [M(CO)₄- $(Ph_2 PCHRPPh_2)$ (R = alkyl or aryl) [1]. In contrast, the free anion derived from dppm viz [Ph2- $PCHPPh_2$ is ambident and can be attacked at carbon and/or phosphorus by electrophiles [2]. We now wish to report that dppm coordinated to platinum(II) or palladium(II) can be similarly alkylated. There is currently much interest in the chemistry of dppm coordinated to platinum or palladium.

Results and Discussion

Clearly, LiMe or LiBuⁿ might not be satisfactory bases for deprotonation of dppm coordinated to platinum(II) since they are also powerful nucleophiles towards platinum(II) {or palladium(II)}. Thus we have used a very strong but non-nucleophilic (i.e. bulky) base, LiN(SiMe₃)₂. Treatment of a suspension of $[PtI_2(dppm)]$ with an equivalent amount of LiN(SiMe₃)₂ in tetrahydrofuran (THF) for 1¹/₂ hour at 20 °C gave a clear yellow solution which, when treated with methyl iodide and heated 45-50 °C for 5 hours, gave [PtI₂(Ph₂PCHMePPh₂)], as yellow prisms from dichloromethane, in 72% isolated yield. The product was characterized by elemental analysis, molecular weight, mass spectrum, and ¹H, ¹H-{³¹P} and ³¹P-{¹H} NMR spectroscopy. [PtI₂(Ph₂PCHEtPPh₂)] was similarly prepared in 86% isolated yield and [PtBr₂{Ph₂PCH(CH₂Ph)- PPh_2] was prepared in 85% yield from [PtBr₂- $(Ph_2PCH_2PPh_2)]$. It is noteworthy that uncomplexed [Ph2PCHPPh2] is attacked by benzyl

chloride predominantly at phosphorus [3]. Treatment of $[PtI_2(Ph_2PCH_2PPh_2)]$. with LiN(SiMe_3)₂/ MeI as above followed {without isolation of $[PtI_2-(Ph_2PCHMePPh_2)]$ } by a second addition of LiN-(SiMe_3)₂ and then, after a further hour, MeI, gives the dimethylated derivative $[PtI_2(Ph_2PCMe_2PPh_2)]$ in 73% overall yield. These new complexes were fully characterized in a similar manner to $[PtI_2(Ph_2-PCHMePPh_2)]$ (above).

It seemed possible that the product formed by treating [PtI₂(Ph₂PCH₂PPh₂)] with LiN(SiMe₃)₂ was a carbanion [PtI2(Ph2PCHPPh2)], a lithio derivative [PtI2(Ph2PCHL1PPh2)] (more covalent than the carbanion), or a di-iodo bridged complex, $[Pt_2(\mu-I)_2(Ph_2PCHPPh_2)_2]$. We have attempted to learn something about the nature of the intermediate by means of a ³¹P-{¹H} NMR study. Treatment of $[PtI_2(dppm)]$ with L1N(SiMe₃)₂ (1.05 mole equivalents) in THF gives a single species characterized by a singlet with singlet satellites due to coupling to platinum-195; $\delta(P) = -63.2$ ppm, ¹J(Pt-P) = 2747 Hz {using deuterioacetone as external reference}. $[PtI_2(dppm)]$ in THF shows $\delta(P) = -71.1$ ppm, $^{1}J(Pt-P) = 2849 \text{ Hz} \{ \text{shifts relative to } 85\% \text{ H}_{3}PO_{4} \}.$ The spectrum was also measured at -64 °C and showed no change there being no evidence of a binuclear species *i.e.* no evidence of three bond coupling to platinum-195 nor evidence of coupling to lithium-7. Halo-bridged platinum(II)-PR3 complexes show three bond coupling, ³J(Pt-P) and two bond coupling, ²J(Pt-Pt) [4, 5] and free Ph₂PCHL₁PPh₂ at -73 °C shows well resolved coupling, ²J(³¹P-⁷L₁) [6]. Thus we suggest that our intermediate is the free anion [PtI₂(Ph₂PCHPPh₂)]⁻. We have also done a preliminary study on the methylation of the corresponding palladium complex [PdI₂(Ph₂PCH₂PPh₂)]. Treatment of this complex with LiN(SiMe₃)₂ (1.1 equivalent) followed by methyl iodide (1.1 equivalent) gave a mixture which was mainly [PdI2(Ph2-PCHMePPh₂)] but it also contained some of the starting complex and the dimethylated complex $[PdI_2(Ph_2 PCMe_2 PPh_2)]$. This mixture was not separated but its components were characterized by ¹H, ¹H-{³¹P} and ³¹P-{¹H} NMR spectroscopy.

We are investigating the possibility of deprotonation/alkylation of binuclear complexes containing (μ -dppm) moieties such as 'A-frames' metal-metal bonded species *etc.* [7, 8].

Acknowledgement

We thank the Iraqi Ministry of Higher Education and Scientific Research, and the Science and Engineering Research Council for support.

^{*}Author to whom correspondence should be addressed.

^{0020-1693/82/0000-0000/\$02.75}

[©] Elsevier Sequoia/Printed in Switzerland

L124

References

- 1 S. Al-Jibori and B. L. Shaw, J. Chem. Soc. Chem.
- Commun., 286 (1982). 2 R. Appel, M. Wander and F. Knoll, Chem. Ber., 112, 1093 (1979).
- 3 K. Issleib and H. P. Abicht, J. Prakt. Chem., 312, 456 (1970).
- 4 A. A. Kiffen, C. Masters and J. P. Visser, J. Chem. Soc., Dalton, 1311 (1975).
- 5 N. M. Boag, J. Browning, C. Crocker, P. L. Goggen, R. J. Goodfellow, M. Murray and J. L. Speneev, J. Chem. Research (S), 228 (1978).
- 6 I. J. Colquhoun, H. C. E. McFarlane and W. McFarlane, J. Chem. Soc. Chem. Commun., 220 (1982). 7 P. Pringle and B. L. Shaw, J. Chem. Soc. Chem. Commun.,
- 81 (1982).
- 8 P. Pringle and B. L. Shaw, J. Chem. Soc. Chem. Commun., 581 (1982) and references therein.