SO_2 Binding to a Metal-Metal Bond: Vibrational Spectra of $Fe_2(CO)_8SO_2$

C. SOURISSEAU and J. CORSET L.A.S.I.R. - C.N.R.S., 2, rue Henri Dunant, 94320 Thiais, France Received July 5, 1979

Infrared and Raman spectra (3000-10 cm⁻¹) are reported for $Fe_2(CO)_8SO_2$ in the solid state at 300 and 100 K. An assignment for most of the vibrational modes is proposed. Spectroscopic and X-ray diffraction data concerning the SO₂ bridged molecule are correlated. An approximate valence force field calculation has been performed and the Fe-Fe, Fe-S and S....O bond force constants are estimated equal to 1.12, 1.65 and 7.4 mdyn/Å, respectively: these values are compatible with an electronic donation of SO₂ to the metal-sulfur and metal-metal bonds. The comparison of Raman spectra using different exciting radiations (647.1 nm, 514.5 nm and 488.0 nm) shows that the modes primarily associated with vibrations of the Fe₂S cluster display intensity enhancements by a preresonance Raman effect. The visible absorption at ~ 480.0 nm is thus assigned to a cluster electronic transition.

Introduction

In order to study the adsorption of small molecules $(SO_2, CO_2, CS_2...)$ on metal surfaces, we have first investigated the vibrational spectra of $Fe_2(CO)_8$ - SO_2 [1] in which the SO_2 ligand bridges the two groups $Fe(CO)_4$ (Fig. 1). The choice of this very simple model compound is justified by crystallographic data of some trimetallic complexes [2, 3] which show that the SO_2 molecule is coordinated through the sulfur atom bridging only one metal-metal bond.

To our knowledge, only brief reports of the infrared spectrum of this compound are existant and they mainly discuss the bands characteristic of the C=O and $S\cdots O$ stretching vibrations [4, 5]. We have investigated complete infrared and Raman spectra of the solid complex at 300 K and 100 K in order to assign all vibrational modes and to correlate spectroscopic results with the structure of bridging SO₂. In addition, from a normal coordinate calculation, we have estimated the Fe–Fe, Fe–S and S \cdots O bond strengths. Finally, new information about the nature of the first electronic transition of the compound is obtained from a study of the preresonance Raman spectra.

Fig. 1. Structure of $Fe_2(CO)_8SO_2$ (taken from ref. 1) with internal coordinates defined. Molecular parameters: distances Fe-Fe = 2.717 A, Fe-C = 1.800 A, CO = 1.150 A, Fe-S = 2.220 A, SO = 1.45 A; angles $C_{ax}FeC_{ax}$, = 108.25°, C_{ax} - $FeC_{eq} = 90.8°$, $C_{eq}FeC_{eq} = 177°$, FeCO = 180°, OSO = 114°.

Experimental

 $Fe_2(CO)_8SO_2$ was prepared according Field and Newlands' procedure [5] and recrystallized from CH_2Cl_2 in order to get yellow-orange crystals. The complex decomposes, without melting at 125 °C (lit. 120–125 °C [4]; 100 °C [5]) and its purity was checked by several analyses.

Fe₂C₈O₁₀S, calc. (%): Fe, 27.93; C, 24.08; S, 8.02. Found (%): Fe, 27.10; C, 23.60; S, 7.94.

Infrared spectra at room temperature and at liquid nitrogen temperature (~100 K on the sample were obtained from nujol and fluorolube mulls with the Perkin-Elmer 225 and 180 instruments (3000–180 cm⁻¹) and with a Polytec FIR 30 interferometer ($310-10 \text{ cm}^{-1}$).

Raman spectra were recorded on a triple monochromator Coderg T 800 instrument with the exciting wavelengths 647.1 nm (Kr^{*}), 514.5 nm and 488.0 nm (Ar^{*}) of two Spectra Physics model 164 lasers. Raman spectra at room temperature were obtained using a sample holder rotating at *ca*. 1600 r.p.m. [6, 7] and those at 100 K from KClO₄ disks of the sample in conjunction with a glass block

Fig. 2. Infrared spectrum of the $Fe_2(CO)_8SO_2$ solid complex at 300 K. (the arrows indicate bands assigned to the SO_2 internal vibrations).

Fig. 3. Raman spectra (2150–2000 cm⁻¹ and 1250–10 cm⁻¹ ranges) of $Fe_2(CO)_8SO_2$ compound at 100 K (A) and 300 K (B) using $\lambda_0 = 6471$ A Kr⁺ laser exciting radiation.

rotating at 1500 r.p.m; the rotating block refracts the laser beam rapidly across the surface of the sample in order to minimize any local heating effects [8]. Some experiments with CH₂Cl₂ ($3 \times 10^{-2} M$) and CHCl=CHCl ($1 \times 10^{-3} M$) solutions were performed using a rotating liquid cell; however, because of the low solubilities and rapid decomposition of solutions under the laser beam, only three bands were observed at 284 and 181 cm⁻¹ (polarized) and at 216 cm⁻¹ (depolarized).

UV-visible electronic spectra were recorded on a Cary 14 instrument by transmission and diffuse reflectance.

Results and Discussion

Infrared and Raman spectra $(2100-10 \text{ cm}^{-1})$ of Fe₂(CO)₈SO₂ in the solid state are shown in Figs.

2 and 3. The observed frequencies and proposed assignments are reported in Table I.

Crystal Structure and Symmetry Classification of Vibrations

The compound crystallizes [1] in the monoclinic space group $P2_1/c$ (C_{2h}^5) with four molecules per unit cell. The free complex has effective C_{2v} symmetry and the 57 internal modes are classified as follows:

$$\Gamma_{\rm vib} = 18 \, A_1 + 11 \, A_2 + 16 \, B_1 + 12 \, B_2$$

In the solid state, one expects $4 \times 57 = 228$ vibrations (57 A_g + 57 B_g + 57 A_u + 57 B_u) and each mode must give rise to two Raman active components (A_g + B_g) plus two infrared active bands (A_u + B_u). In addition, 21 external vibrations (6 A_g + 6 B_g +

TABLE I. Infrared and Ra	aman Vibrational Frequencies (cm	1) and Assignments of Normal Modes for	$Fe_2(CO)_8SO_2$ in the Solid
State.			

Infrared ^a		Raman ^b			Assignments		
300 K	int.	100 K	int.	300 K	(int)	100 K	
2132	М	\$ 2134	M	2132	(5)	2134	
2127	vw	2129	vw	-			
		2094	sh				
2089	vs	2090	VS				
2068	VS	2972	vs				
_		2069	sh	2064	(4)	2066	
2051	vs	2053	vs	2050	(5)	2052	
2039	sh	(2040	S	2046	(3)	2047	
2036	s	2037	s	2035	(2)	2037	vc=0
(2026	sh	(2027	sh	2024	(6)	2025	
2020	vs	2022	vs				
2016	vs	2017	vs	2017	(7)	2018	
2010	\$	2011	S	2007	(6)	2008	
1992	М	1992	М			1	
1986	Μ	1986	М			1	
1978	М	1977	М			/	
(1200		(1205		1203	(5)	1204	3 ² SO
1209	3	1106	s ch	1203	(3)	1204	$v_a = 50_2$
1102	м	1190	M	1188	(1)		" ³⁴ SO-
1192	IVI VW	1189	IVI VW	1100	(1)		v_a SO_2
(1101		1063	M	1062	(4)	1063	$2 \times \delta SO_2 = 2 \times 530 = 1060 \text{ cm}^{-1}$
(1053	sh	(1053	s	1002	(1)	1000	2
1048	5	1048	s	1048	(6)	1044	ν_{2}^{32} SO ₂
1040	sh	1039	M	1010			ν_{0}^{34} SO ₂
1027	vw	1027	vw				5 2
		634	М			632	
629	М	630	М	627	(9)	{ 629	
620	sh	623	S	-			
615	\$	1 619	S				
60 .		609	S	600			
605	S	605	S	608	(4)	610	δFe-CO
		598	s				
594	М	594	S	- Maria			
551	Μ	\$ 554	М	552	(2)	553	
		546	sh)	
\$ 530	М	\$ 531	s	530	(9)	531	$\delta^{32}SO_2$
526	sh	527	sh				$\delta^{34} SO_2$
		(,	
100		503	M			400	
499	М	(496	М	407		499	
-		488	vw	487	(6)	484	
467	vw	4/2	w	457	(7)	460	
450	VW M	400	w	437	(7)	400	
442	sh	445	M		(2)	440	
425	511 VW	478	VW	474	(8)	427 X	- vFe-C
425	vw vu	417	vw	416	(11)	419	
408	V11/	410	w	410	(16)	411	
397	w	(400	M	410	(10)		
571		396	sh				
		(390	vw	1390	(4)	§ 391	
383	w	386	М	383	(6)	385	
		,				, ,	······································

(continued overleaf)

TABLE I. (continued)

Infrared ^a				Raman ^b			Assignments
300 K	int.	100 K	int.	300 K	(int)	100 K	
282	w	288	w	284	(65)	289	vs Fe–S
269	w	272	w	271	(25)	273	ν _a Fe-S
225	vw	226	w	222	(23)	227	δ O-S-Fe (wagging SO ₂)
188	w	192	w	188	(100)	192	v Fe-Fe
						162	
152	vw	158	vw	153	(26)	156	
142	vw	145	vw	140	sh	144	δ O-S-Fe (rocking and twisting SO ₂)
						132	
127	w	132	w	126	sh	127	+
116	w	117	w	117	(51)	119	
						111 >	δC-Fe-C
102	vw	103	vw	106	(53)	107	
83	vw	86	vw	86	(24)	88	+
						180	δS–Fe–C + δC–Fe–Fe
77	vw	76	vw	75	(34)	76	
				62	(24)	66	
52	vw	57	vw	46	(61)	54 /	
				39	sh	43)	
35	vw	36	vw	_			T - 445
				26	(12)	30	Lattice modes
				18	(40)	21)	

^aInfrared intensities with the symbols: vs = very strong, s = strong, M = medium, w = weak, vw = very weak, sh = shoulder. ^bRaman intensities are compared with the strongest band at 188 cm⁻¹ of intensity (100).

5 $A_u + 4B_u$) of the crystal are expected. However, the lattice modes and some internal deformations (δS -Fe-C, δC -Fe-Fe) must appear at frequencies lower than 100 cm⁻¹ and their assignment is difficult.

Vibrational Assignments

The C≡O stretching modes for terminal carbonyl groups, expected near 2000 cm⁻¹, are observed in the range 2130-1980 cm⁻¹. All the sixteen expected $\nu C \equiv O$ vibrations (Table I) are observed in infrared, while only eight Raman bands are detected. The average frequency of these vibrations, equal to 2046 cm⁻¹, is higher than those of corresponding unsubstituted carbonyl compounds, as for example 2027 cm⁻¹ in $Fe_2(CO)_9$ [9]: the SO₂ ligand seems to be a weaker electron donor than bridging carbon monoxide groups. The SO₂ molecule is characterized by the very strong absorptions at 1209 and 1048 cm⁻¹ assigned to v_{a} and v_{s} stretching modes, respectively [10] while the bending vibration is observed at 530 cm⁻¹. The corresponding Raman bands show a weak intensity suggesting a low value for the polarizability derivative of S^{....O} bonds. These bonds behave like polar ones, ${}^{\delta}$ S^{...O ${}^{\delta^+}$ and a π electronic} delocalization must be existant which strengthens internal bonds of the Fe₂S cluster. The observation

in the solid state spectrum of four infrared components for ν_a and $\nu_s SO_2$ vibrations can be explained by an isotopic effect of ³²S and ³⁴S atoms; their natural abundance is 95% and 4.2% respectively. We have thus estimated the vibrational frequencies equal to 1206, 1048 and 530 cm⁻¹ for ³²SO₂ and to 1190, 1049 and 526 cm⁻¹ for ³⁴SO₂ ligand; the theoretical [11] and experimental ratio ($\nu_s \times \delta$)³²SO₂/($\nu_s \times \delta$)³⁴SO₂ are very close, 1.0303 and 1.0309 respectively.

It is important to notice that the frequency decrease of the S=O stretching modes on going from the free [12] to the complexed state are roughly equal to 150 and 100 cm⁻¹ whereas, according to the X-ray data, the variations of S-O distances are quite small, 1.43 Å [13] as compared with 1.45 Å [1]. However, the O-S-O angle (114°) is sensitive to the complex formation since in solid SO₂ this angle is trigonal (119.5°). We have intended to confirm these geometric changes using an approximate calculation on the XY_2 model [11]. Such a calculation performed for both isotopic ligands shows not only a weakening of the S-O bond force constants in the complex but also a slight closure of the O-S-O angle, from 120° to 117.8°. We do not again find the 114° experimental value because, in particular, the anharmonicity of vibrations has not been taken into account [14].

The bands observed in the ranges 640-550 and 500-380 $\rm cm^{-1}$ are assigned by comparison with the spectra of some carbonyl compounds [9, 15-17] to Fe-C-O bending modes and to Fe-C stretching vibrations. Moreover, the strongest Raman bands at 284 and 188 cm⁻¹ (polarized) are assigned indoubtedly to v_s Fe-S and vFe-Fe vibrations. As a matter of fact, the former vibration has been observed at near 300 cm⁻¹ in Fe₂(CO)₆(SCH₃)₂ and in $Fe_2(CO)_6 S_2$ compounds while the frequencies of the stretching metal-metal bonds, which are bridged by two sulfur atoms, are equal to 207 and 195 cm⁻¹ [15, 16], respectively. A Raman band at 204 cm⁻¹ has been recently assigned to this mode with $Fe_2(CO)_6S_2CH_2$ compound [18]. Finally, for $Fe_2(CO)_8^2$ anions which have a direct iron-iron bond, this vibration has been observed near 170 cm^{-1} [19]. So, our reported value (188 cm^{-1}) for a single sulfur bridged metal-metal bond is quite reasonable. However, it is difficult to correlate vibrational frequencies with intermetallic distances because, on one hand, of the vibrational coupling and, on the other hand, of the steric effects of bridging ligands. In the above mentioned systems these bond distances span a rather wide range of values from 2.485 Å in Fe₂(CO)₆S₂CH₂ [18] to 2.787 Å in $Fe_2(CO)_8^{2-}$ [20].

The bands observed at 220, 150 and 120 cm⁻¹ can be assigned to the wagging, rocking and twisting modes of the SO₂ molecule (δ O-S-Fe) and all the bands below 110 cm⁻¹ arise from bending vibrations (δ C-Fe-C, δ S-Fe-C and δ C-Fe-fe) and from lattice modes. In this low frequency range, the Raman spectrum at 100 K is well resolved (Fig. 3) and some bands split into two components; nevertheless, the spectra are not markedly different suggesting that no phase transition is existing.

Finally, it is noteworthy that most infrared and Raman components have close frequency values (Table I). Only Van der Waals interactions take place between the molecules as in molecular crystals.

Normal Coordinate Analysis

An approximate normal coordinate analysis was carried out to clarify the nature of the observed normal modes and to estimate Fe–S and Fe–Fe bond force constants. Schachtschneider' programs [21], GMAT, VBN and FPERT were used to construct the G matrix and to solve the secular equations with least-squares adjustment of the force constants [22]. The molecular parameters and internal coordinates are given in Fig. 1. Only the A_1 block was calculated and the C–Fe–S and C–Fe–Fe angle bending coordinates were not taken into account because they contribute mainly to modes at very low frequencies. However, C–Fe–C coordinates have been included in order to estimate their interaction with the Fe–Fe stretching mode. In a first approximation, the nine

TABLE II. Results of Normal Coordinate Analysis for the A_1 Symmetry Block of Fe₂(CO)₈SO₂.

Frequencies, cm ⁻¹		Potential Energy Distributions %	
obsd	calcd	(major contributors)	
2132	2132.9	νCO, 94	
2050	2050.9	νCO, 94	
2017	2017.0	νCO, 94	
1041	1042.6	ν _s SO ₂ , 91	
627	641.9	δFe-C-O, 53; νFe-C, 14; δC-Fe-C, 12	
608	595.3	δFe-C-O, 87	
552	549.8	δFe-C-O, 86	
530	532.1	δSO2, 55; νFe-C, 13; νFe-S, 12	
487	490.0	vFe-C, 94	
457	452.6	νFe-C, 64;δFe-C-O, 10	
410	408.0	vFe-C, 68; vFe-S, 10	
284	283.3	νFe-S, 48; νFe-Fe, 23; δSO ₂ , 15	
188	186.9	νFe-Fe, 49; δC-Fe-C, 16; νFe-S, 13	
106	104.2	δC–Fe–C, 74	
86	85.0	δC–Fe–C, 86	
62	56.7	δC-Fe-C, 89	

 A_1 modes, $3\nu C \equiv 0$, 3δ FeCO and 3ν Fe-C, were assigned to the strongest Raman bands.

Valence force constants were used to construct the F matrix and off-diagonal elements have been neglected. The principal force constants were estimated from literature values for analogous sytems [16] and were then refined to fit the observed frequencies. Results are given in Tables II and III.

A satisfactory agreement between observed and calculated frequencies has been obtained (Table II). The frequencies which primarly involve motions of the Fe₂S cluster are calculated within experimental accuracy and we note some vibrational coupling of the vFe-S, vFe-Fe and δ SO₂ modes. The metalmetal stretching vibration (49% vFe-Fe) shows also an appreciable contribution from C-Fe-C bending modes (16% of potential energy distribution). These δC -Fe-C vibrations have calculated at frequencies lower than 110 cm⁻¹ in agreement with the assignments made above. Values of the C≡O, Fe-C, Fe-S stretching force constants and of Fe-C-O, C-Fe-C bending constants (Table III) can be well compared with those proposed by Scovell and Spiro [16] in $Fe_2(CO)_6S_2$. On the other hand, we note some decrease of the metal-metal force constant from 1.3 to 1.1 mdyn/Å in agreement with Badger's empirical rule [23], i.e. with the variations of interatomic distances, 2.550 and 2.717 Å respectively. The relatively low value of the S-O stretching constant, 7.4 mdyn/Å as compared to 10.2 mdyn/Å for the free molecule (Table III), is in accordance with our

Int. Coordinate	Force Constants		Average Values	Analogous Compounds [ref.]
r _i	$f(\nu CO)_{ax}$ $f(\nu CO)_{ax'}$ $f(\nu CO)_{eq}$	= 17.4 mdyn/A = 16.1 mdyn/A = 15.5 mdyn/A	16.33 mdyn/A	16.20 mdyn/Å in Fe ₂ (CO) ₆ S ₂ [16]
c _i	$f(_{\nu}FeC)$ ax or ax' $f(_{\nu}FeC)$	= 2.6 mdyn/A = 2.9 mdyn/A	2.70 mdyn/A	2.59 mdyn/A in $Fe_2(CO)_6S_2$
S	f(vFeS)	= 1.65 mdyn/A	_	1.62 mdyn/Å in Fe ₂ (CO) ₆ S ₂
x	f(vFe-Fe)	= 1.12 mdyn/Å	_	1.30 mdyn/A in Fe ₂ (CO) ₆ S ₂
δ _i	$f(_{\delta}FeCO)_{ax}$ $f(_{\delta}FeCO)_{ax}$, $f(_{\delta}FeCO)_{eq}$	= 0.95 mdyn × A/rad = 0.80 mdyn × A/rad = 0.65 mdyn × A/rad	0.80 mdyn × A/rad	0.87 mdyn × A/rad in Fe ₂ (CO) ₆ S ₂
α _i	$f(_{\delta}C_{ax}FeC_{ax'})$ $f(_{\delta}C_{ax}FeC_{eq})$ $f(_{\delta}C_{eq}FeC_{eq})$	= 0.40 mdyn × A/rad = 0.68 mdyn × A/rad = 0.52 mdyn × A/rad	0.53 mdyn × A/rad	0.315 mdyn × A/rad in Fe ₂ (CO) ₆ S ₂
R	$f(_{\nu}SO_2)$	= 7.4 mdyn/Å	-	10.2 mdyn/A in SO ₂ [12]
β	$f(\delta SO_2)$	= 1.62 mdyn × A/rad	-	1.63 mdyn \times A/rad in SO ₂ [12]

TABLE III. Adjusted Valence Force Constants for Fe2(CO)8SO2 and Comparison with Analogous Compounds.

Fig. 4. Raman spectra in the range 300–160 cm⁻¹ of Fe₂-(CO)₈SO₂ obtained with different laser excitations (6471) 5145 and 4880 Å). The Raman intensities are compared with those of the internal standard ($\nu_{\rm s}$ ClO₄) and normalized for each band at 6471 Å. A schematic representation of the corresponding normal modes, $\nu_{\rm s}$ FeS, $\nu_{\rm a}$ FeS, wag. SO₂ and ν Fe-Fe is given.

interpretation of the spectroscopic results and confirms that SO_2 is a strong electron donor.

However, the O-S-O bending constant value does not display any appreciable change and this may be explained by a cancellation of electronic and geometric factors. In conclusion, the SO₂ binding weakens the S-O bond force constants and strengthens bonds of the Fe_2S cluster.

Raman Intensities

While a rigourous analysis of Raman intensities in solution in order to estimate bond polarizability derivatives is precluded (see experimental part), we have nevertheless obtained new information from the solid state spectra using different exciting radiations. However, the solid complex decomposes rapidly under the laser beam when it is tuned with wavelengths in the range 480.0-350.0 nm. We have only succeeded in getting spectra from pressed disks with KClO₄ maintained at ~100 K using low power (≤20 mW) of the radiations 647.1, 514.5 and 488.0 nm. The results in the frequency range 300-160 $\rm cm^{-1}$ are given in Fig. 4. As the maximum of the first electronic transition at about 480.0 nm (Fig. 5) is approached we observe a great intensity enhancement of the bands at 192 and 227 cm⁻¹ and also some increase of the bands at 271 and 284 cm^{-1} . The corresponding vibrational modes are concerned mainly with variations of Fe-Fe and Fe-S bond distances and they must be involved in the geometry changes of the complex in the excited state [24]. A similar preresonance enhancement of the bands assigned to the Fe-Fe, Fe-S and S-S stretching vibrations has also been suggested in the Raman

Fig. 5. UV-visible electronic spectra (670–250 nm) of $Fe_2(CO_8)SO_2$ in the solid state (a), obtained by diffuse reflectance and by diluting the solid in the white pigment MgCO₃, and of a CH₂Cl₂ solution (b). Both spectra show absorption maxima at different frequencies but the values reported in spectrum a) are only approximate due to the broad bands observed.

spectrum (at $\lambda_0 = 676.4$ nm) of Fe₂(CO)₆S₂; the electronic absorption spectrum of this orange complex shows a broad shoulder at near 470.0 nm. Moreover, we have observed only a weak intensity enhancement for the SO₂ bending vibration and no preresonance effects for the S–O stretching modes. In conclusion, the electronic transition at ~480.0 nm is mainly responsible for the Raman intensity enhancements; this absorption is undoubtedly associated with one Fe₂S cluster transition.

Acknowledgments

We are grateful to J. Hervieu and M. C. Vitorge for technical assistance and we thank D.G.R.S.T. for its financial support by contract nr. 767 11 13.

References

- 1 J. Meunier-Piret, P. Piret and M. Van Meerssche, Bull. Soc. Chim. Belges, 76, 374 (1967).
- 2 S. Otsuka, Y. Tatsuno, M. Miki, T. Aoki, M. Matsumoto, H. Yoshioka and K. Nakatsu, *Chem. Comm.*, 445 (1973).
- 3 D. C. Moody and R. R. Ryan, Inorg. Chem., 16, 1052 (1977).

- 4 E. H. Braye and W. Hübel, Angew. Chem. Internat. Edit., 2, 217 (1963).
- 5 D. S. Field and M. J. Newlands, J. Organomet. Chem., 27, 221 (1971).
- 6 R. J. H. Clark, in 'Adv. in Infrared and Raman Spectroscopy', 1, 143 (1975).
- 7 W. Kiefer, in 'Adv. in Infrared and Raman Spectroscopy', 3, 1 (1977).
- 8 R. J. H. Clark and P. C. Turtle, Inorg. Chem., 17, 2526 (1978).
- 9 I. S. Butler, S. Kishner and K. R. Plowman, J. Mol. Struct., 43, 9 (1978).
- 10 G. J. Kubas, Inorg. Chem., 18, 182 (1979) and ref. therein.
- 11 G. Herzberg, in 'Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules', D. Van Nostrand, N.Y., 169-170 (1962).
- 12 P. Thirugnanasambandam and S. Mohan, J. Chem. Phys., 61, 470 (1974).
- 13 R. Post, R. S. Schwartz and I. Fankuchen, Acta Cryst., 5, 372 (1952).
- 14 D. Maillard, M. Allavena and J. P. Perchard, Spectrochim. Acta, Part A, 31, 1523 (1975).
- 15 S. F. A. Kettle and P. L. Stanghellini, Inorg. Chem., 16, 753 (1977).
- 16 W. H. Scovell and T. G. Spiro, *Inorg. Chem.*, 13, 304 (1974) and ref. therein.
- 17 D. H. Finseth, C. Sourisseau and F. A. Miller, J. Phys. Chem., 80, 1248 (1976).
- 18 A. Shaver, P. J. Fitzpatrick, K. Steliou and I. S. Butler, J. Am. Chem. Soc., 101, 1313 (1979).
- 19 S. Onaka and D. F. Shriver, Inorg. Chem., 15, 915 (1976).

- H. B. Chin, M. B. Smith, R. D. Wilson and R. Bau, J. Am. Chem. Soc., 96, 5285 (1974).
 J. H. Schachtschneider, Technical Reports 231-64 and 57-65, Shell Development Co, Emeryville, Calif., 1964 and 1965.

- E. B. Wilson Jr, J. D. Decius and P. C. Cross, in 'Molecular Vibrations', McGraw-Hill, N.Y. (1955).
 R. M. Badger, J. Chem. Phys., 2, 128 (1934).
 Y. Nishimura. A. Y. Hirakawa and M. Tsuboi, in 'Adv. in Infrared and Raman Spectroscopy', 5, 217 (1978).