MINDO/3 Study of First-row Triatomic Hydrides HMH, and of their Cations and Anions

JAMES R. BEWS and CHRISTOPHER GLIDEWELL* Chemistry Department, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K. Received August 6, 1979

MINDO/3 has been used to calculate the variation of ΔH_f^{Θ} and d(M-H) as a function of angle <HMH for eighteen first-row triatomic hydride species, neutral and singly charged. Orbital energies, vertical and adiabatic ionisation energies, and dipole moments for neutral fragments, are also reported.

Introduction

The rationalisation of the structures of small molecules was first attempted in molecular orbital terms by Walsh [1]: the diagrams presented by Walsh have subsequently been supported by the extended-Hückel calculations of Gimarc [2] for the series of neutral molecules NH_n (n = 2, 3, 4). A number of *ab initio* calculations have been made on individual species [*e.g.* 3–5], but where several studies have been made of a single species the agreement has often been less than impressive: for a number of studies have been made of the ³B₁ state of CH₂, and the calculated energy minimum varies from <HCH of 100.5° to <HCH of 140° [6].

In this paper, we present the results of MINDO/3 calculations on first-row triatomic hydrides HMH and their cations and anions, having between four and ten valence-shell electrons, as M varies from boron to fluorine. These not only complement the qualitative models of Walsh and Gimarc [1, 2] by rendering them quantitative, but also yield data on equilibrium bonds lengths, heats of formation, ionisation energies, and dipole moments.

Method

All calculations were performed on the University of St. Andrews IBM 360 computer, using the IBM version of MINDO/3 [7, 8]. For each triatomic, a series of eight calculations was performed, with the angle \leq HMH at fixed values, varying in steps of 15° from 180° to 75°: in each calculation, the bond distances were optimised. In addition, a further calculation was made for each species, simultaneously optimising both the distance M-H and the angle <HMH to find the equilibrium configuration: convergence was often difficult to achieve for <HMH of 75°. For the six-electron species BH₂, CH₂, and NH⁺₂ both singlet and triplet configurations were investigated.

Results and Discussion

Orbital Energies

In the linear configuration, all species except the ${}^{1}A_{1}$ states of BH_{2}^{-} , CH_{2} , and NH_{2}^{+} , and the boron species BH_{2}^{+} and BH_{2} were found to adopt the order of molecular orbitals:

$$(1\sigma_{g}^{+})(1\sigma_{u}^{+})(1\pi_{u})(2\sigma_{g}^{+})(2\sigma_{u}^{+})$$

The boron species BH_2^+ and BH_2 adopted the order:

$$(1\sigma_{g}^{*})(1\sigma_{u}^{*})(2\sigma_{g}^{*})(1\pi_{u})(2\sigma_{u}^{*})$$

On reduction of the angle <HMH from 180°, each of these order gives rise, by descent of symmetry, to the order:

 $(1a_1)(1b_2)(2a_1)(1b_1)(3a_1)(2b_2)$

since the degeneracy of π_u is broken on bending to $a_1 + b_1$. For most species, the above orbital ordering for the non-linear molecule is maintained for all values of <HMH between 180° and 75°: at low values of <HMH the orbitals 2b₂ and 3a₁ cross in CH₂⁺ and NH₂⁺ (¹A₁); the orbitals 2a₁ and 1b₂ cross at low values of <HMH only in H₂F⁺, H₂F, and H₂O⁻.

The orbital energies of a typical example, H_2O , are illustrated in Fig. 1: energies, at 15° increments in the angle \langle HMH and at the energy minimum, are listed, along with ΔH_f^{Θ} and d(M-H) for all eighteen species studied, in Table I.

Heats of Formation

Heats of formation are listed in Table I, as a function of \langle HMH; the variation of Δ H⁶_f with \langle HMH is shown in Fig. 2–4 for neutral molecules,

^{*}Author to whom correspondence should be addressed.

1a ₁	10-		IH/° Orbital energy/eV					
	102	2a ₁	1b ₁	3a ₁	2b ₂			
tron species								
25.329	-19.878	-8.673	-8.427	8.427	-5.149	271.638	1.1849	
-25.334	-19.849	-8.977	-8.427	-8.130	-5.178	272.926	1.1855	
-25.350	-19.760	-9.378	-8.430	-7.754	-5.264	276.815	1.1873	
-25.376	-19.609	-9.780	-8.435	7.396	-5.403	283.398	1.1906	
-25.412	-19.388	-10.178	-8.443	-7.074	-5.588	292.872	1.1956	
-25.460	-19.086	-10.573	-8.456	-6.802	-5.806	305.618	1.2028	
-25.527	-18.688	10.974	-8.480	-6.603	-6.040	322.327	1.2123	
-25.646	-18.172	-11.410	-8.528	-6.511	-6.262	344.177	1.2228	
-25.329	-19.878	-8.673	-8.427	8.427	-5.149	271.638	1.1849	
tron species								
-16.935	-12.069	-4.420	-0.306	0.306	2.625	70.359	1.2257	
-16 933	-12.007	-4 559	-0.409	-0.055	2.631	65.121	1.2075	
-16.970	-11 925	-4.883	-0.469	0.323	2.575	59.479	1,1975	
-17.007	-11.743	-5 244	-0.492	0.683	2.463	56.643	1.1975	
-17.063	-11 482	-5.601	-0.508	1.015	2.320	56.832	1,1976	
-17.144	-11 129	5 9 5 3	-0.526	1.297	2.160	60.375	1,1976	
-17 242	-10.659	-6 314	-0.520	1 497	1 997	67 694	1 2018	
-17.403	-10.055	-6.710	-0.593	1.577	1.876	79.234	1.2063	
-17.019	-11.667	-5.361	-0.498	0.793	2.417	56.365	1.1975	
-32.986	-23.172	-13.152	-9.162	-6.982	-3.763	320.578	1.0855	
-33.013	-23.133	-13.300	-9.171	-6.891	-3.849	318.785	1.0887	
-33.123	-23.035	-13.696	-9.200	-6.599	-4.040	315.893	1.0905	
-33.224	-22.816	14.200	-9.225	-6.210	-4.296	315.009	1.0934	
-33.316	-22.470	-14.728	-9.244	-5.812	-4.600	317.694	1.0969	
33.408	-21.995	-15.252	-9.257	-5.464	-4.94 1	324.856	1.1014	
33.458	-21.360	-15.759	-9.257	-5.228	-5.310	337.223	1.1114	
-33.542	-20.589	-16.261	-9.247	-5.124	5.644	355.573	1.1214	
-33.146	-22.807	-14.130	-9.213	-6.287	-4.284	314.994	1.0928	
on species								
-8.624	-4.340	3.444	3.444	8.031	10.473	48.835	1.1322	
-8.552	-4.281	3.404	3.601	7.961	10.390	44.108	1.1609	
-8.573	-4.160	3.101	3.751	8.220	10.326	38.121	1.1729	
-8.638	-3.980	2.747	3.786	8.568	10.225	35.042	1.1757ª	
8,686	-3.723	2.380	3.803	8.854	10.055	34.767	1.1829	
-8.794	-3.374	2.039	3,795	9,121	9,901	37.594	1.1865 ^a	
-8.920	-2.919	1.687	3.776	9.286	9.731	43.799	1.1895	
-9.158	-2.331	1.324	3.727	9.336	9.640	53.464	1.1895	
-8.659	-3.873	2.580	3.796	8.705	10.153	34.547	1.1770	
	-25.329 -25.334 -25.350 -25.376 -25.412 -25.460 -25.527 -25.646 -25.329 ron species -16.935 -16.933 -16.933 -17.144 -17.242 -17.007 -17.063 -17.144 -17.242 -17.403 -17.019 -32.986 -33.013 -33.123 -33.224 -33.316 -33.408 -33.458 -33.458 -33.446 on species -8.624 -8.552 -8.638 -8.638 -8.686 -8.794 -9.158 -8.659	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

TABLE I. Variation of Orbital Energies, $\Delta H_{\mathbf{f}}^{\Theta}$, and d(M-H) with Angle <HMH.

TABLE I.	(continued)
	(contrinueur)

CH ₂ (³ B ₁)								
180	-23.492	-14.262	-3.787	-3.787	2.300	5.439	100.136	1.0641
165	-23.504	-14.217	-3.927	-3.790	2.362	5.344	97.634	1.0688
150	-23.568	-14.090	-4.317	-3.806	2.615	5.130	93.479	1.0753
135	-23.604	-13 . 831	-4.831	-3.821	2.961	4.837	91.584	1.0853
120	-23.739	-13.490	-5,359	-3.841	3.398	4.557	93.320	1.0853
105	-23.789	-12.979	-5.888	3.854	3.722	4.185	99.740	1.0953
90	-23.860	-12.335	-6.398	-3.863	3.964	3.806	111.468	1.1053
75	-24.079	-11.570	-6.882	-3.867	4.148	3.515	129.217	1.1053
135.801	-23.668	-13.879	-4.796	-3.825	2.991	4.894	91.545	1.0781
NH+ (3p)b								
NH2 (D1)						• • • •		
180	-34.092	-26.208	-15.397	-15.397	-6.898	-3.314	262.704	0.9953
165	34.103	-26.160	-15.515	-15.420	-6.822	-3.407	261.558	0.9974
150	-34.190	-26.032	-15.855	-15.487	-6.576	-3.644	259.550	0.9994
135	-34.218	-25.738	-16.326	15.543	-6.260	-4.008	259.264	1.0075
120	-34.408	-25.381	-16.877	-15.606	-5.849	4.400	262.361	1.0075
105	-34.456	-24.805	-17.424	-15.622	-5,535	-4.876	270.106	1.0175
90	-34.540	-24.096	-17.954	-15.613	-5.355	-5.307	283.078	1.0275
140.573	-34.279	-25.902	-16.149	-15.536	-6.354	-3.844	259.011	1.0000
$BH_2^-(^1A_1)$								
180	-8.860	-4.569	-0.547	7.229	7.229	9.660	63.574	1.3612
165	-8.689	-4.426	-0.613	7.308	7.559	9.812	57.832	1.3388
150	-8.588	-4.211	-0.752	7.368	8.017	9.937	48.040	1.3107
135	8.573	-3.950	-0.958	7.390	8.443	9,958	39.108	1.2922
120	-8.599	-3.620	-1.202	7.398	8.822	9.906	32.686	1.2819
105	-8.648	-3.195	-1.464	7,400	9.145	9.820	29.508	1.2768
90	8.724	-2.648	-1 .739	7.401	9.393	9.741	29.953	1.2739
75	-8.858	-2.050	1 .94 7	7.401	9.529	9.733	33.992	1.2710
99.241	-8.672	-3.001	-1.568	7.400	9.250	9.785	29.239	1.2757
$CH_2 (^1A_1)$								
180	-23.492	-14.262	-7.777	0.203	2.300	5.439	143.029	1.0641
165	-23.507	-14.207	-7.847	0.211	2.273	5.319	138.883	1.0722
150	-23.561	-14.065	8.183	0.193	2.301	4.968	127.635	1.0937
135	-23.664	-13.831	-8.732	0.145	2.595	4.608	114.777	1.1082
120	-23.777	-13.462	-9.276	0.115	2.997	4.293	105.173	1.1150
105	-23.888	-12.944	-9.787	0.100	3.375	3.981	100.538	1.1203
90	-23.992	-12.265	-10.270	0.098	3.666	3.674	101.638	1.1269
75	-24.084	-11.406	-10.741	0.114	3.404	3.815	109.002	1.1369
100.177	-23.922	-12.745	-9.945	0.098	3.481	3.881	100.239	1.1222
$NH_{2}^{+}(^{1}A_{1})$								
1.80	_34 092	26 208	-20 147	-10.647	-6 898	3 3 1 4	310 901	0 0052
165	-34.092	-20.200	-20.147	-10.047	-0.070	-3.314	308 040	0.9933
150	-34 137	-20.147	20.190	-10.000	-6.793	-3.413	303.707	1.0075
135	-34.137	-25.975	-20.300	-10.752	-6.500	- 3.093	202.772	1.00/5
120	-34 303		-20.092	-10.030	-6.241	4.114	27/.1/1	1.0188
105	-34 425	-23.301	-21.127	-11.002	-6.541	-5.005	271.//3	1.0293
90	-34 543	-24.090	-21.000	11 024	-0.077	-5.095	207.040 707 797	1.0393
75	-34.618	-23.243	-22.073 -22.513	-11.034	-5.860	-5.997	301.200	1.0654
106.016	-34.416	-24.813	-21.574	10.998	-6.093	-5.061	289.836	1.0386

_

(d) Seven-e	electron specie	5						
CH ₂								
180	-13.887	-5.234	1.624	5,614	11.639	14.662	146.180	1.0526
165	-13.891	-5.186	1.575	5.627	11.553	14.524	142.295	1.0626
150	-13.876	-5.079	1.204	5.594	11,278	13.982	130.566	1.1024
135	-13.931	-4.866	0.533	5,505	11.463	13.493	116.243	1.1291
120	-14.027	-4.485	-0.022	5.474	11.886	13.187	105.918	1.1366
105	-14.127	-3.953	-0.522	5.461	12.286	12.888	100.951	1.1420
9 0	-14.227	-3.257	-0.992	5.457	12.585	12.598	101.970	1.1487
75	-14.324	-2.377	-1.452	5.464	12.306	12.773	109.600	1.1590
99.891	-14.162	-3.735	-0.685	5.459	12.405	12,785	100.597	1.1440
NH ₂								
180	-24.119	-16.192	-9.262	-4.516	3.148	7.004	61.022	0.9690
165	-24.120	-16.133	-9.309	-4.542	3.141	6.883	58,531	0.9737
150	-24.116	-15.962	-9.497	-4.637	3.145	6.522	51.563	0.9876
135	-24.122	-15.686	-9.908	-4,789	3.253	5.986	42.186	1.0063
120	-24.180	-15.282	-10.463	-4.932	3.513	5,424	34.050	1.0219
105	-24.284	-14.721	-11.032	-5.029	3.824	4.891	30.181	1.0339
9 0	24.401	-13.991	-11.569	5.078	4.076	4.388	32.175	1.0455
75	-24.495	13,081	12.071	-5.078	3.930	4.182	40.870	1.0605
102.214	-24.306	14.599	-11.135	-5.041	3.878	4.795	30.077	1.0360
H₂O [⁺]								
180	-39.900	-29.605	-24.118	-18.783	-7.724	-3.209	250.203	0.9487
165	-39.932	-29.556	-24.203	-18.814	-7.679	-3.324	248.320	0.9509
150	-40.026	-29.412	-24.462	18.898	-7.541	-3.648	243.358	0.9562
135	-40.170	-29.168	-24,877	-19.016	-7.319	-4.121	237.383	0.9628
120	-40.338	-28,806	-25,394	-19.131	-7.054	-4.677	232.808	0.9692
105	-40.499	-28.305	-25.948	-19.214	-6.818	-5.267	231.664	0.9761
90	-40.619	-27.655	-26.493	-19.246	-6.690	-5.849	235.245	0.9851
75	-40.649	-27.005	-26.858	-19.210	-6.759	-6.375	244.250	0.9994
108.419	-40.464	-28.432	25.821	-19.199	-6.865	-5.132	231.544	0.9745
(e) Eight-e	lectron species	5						
NH_2^-								
180	-13.887	-6.041	1.700	1.700	13.192	17.383	103.325	0.9584
165	-13.872	5.995	1.655	1.654	13.116	17.217	100.009	0.9658
150	-13.770	-5.887	1.388	1.455	12.849	16.620	89.965	0.9938
135	-13.622	-5.712	0.627	1.096	12.711	15.708	75.324	1.0339

150	-13.770	-5.887	1.388	1.455	12.849	16.620	89.965	0.9938
135	-13.622	-5.712	0.627	1.096	12.711	15.708	75.324	1.0339
120	-13.678	-5.322	-0.121	0.908	13.050	15.100	63.191	1.0520
105	13.781	-4.735	-0.75 9	0.818	13.465	14.604	57.001	1.0623
90	-13.905	-3.964	-1.334	0.771	13.804	14.128	57.788	1.0727
75	-14.009	-3.002	-1.877	0.756	13.667	13.991	66.289	1.0870
99.057	-13.831	-4.451	-0.993	0.796	13.613	14.414	56.438	1.0662
H ₂ O								
180	-29.163	-18.816	12.235	-12.235	3.081	7.955	-24.348	0.9002
165	-29.179	-18.756	-12.316	-12.268	3.097	7.812	-26.958	0.9039
150	-29.231	18.584	-12.585	-12.367	3.169	7.406	-33.959	0.9139
135	-29.324	-18.301	-13.058	-12.512	3.347	6.822	-42.870	0.9265

TABLE I.	(continued)
----------	-------------

120	-29.454	-17.886	-13.667	-12.655	3.624	6,171	-50.342	0.9379
105	-29.594	-17.316	-14.313	-12.758	3.917	5.514	-53.591	0.9480
90	-29.712	-16.578	-14.943	-12.807	4.130	4.875	-50.909	0.9587
75	-29.760	-15.676	-15.537	-12.789	4.166	4.278	-41.256	0.9736
104.027	-29.610	-17.276		-12764	3 940	5 4 7 6	-53610	0 9481
104.027	-27.010	-17.270		-12.704	5.540	5.470	-55,010	0.9401
H₂F [⁺]								
180	-48.401	-27.755	-25.007	-25.007	-9.595	-4.952	167.076	0.9461
165	-48.504	-27.802	-25.151	-25.099	-9.560	-5.081	165.533	0.9474
150	-48.758	-27.898	-25.530	-25.324	-9.467	-5.414	161.721	0.9502
135	-49.064	-27.965	-26.048	-25.593	-9.349	-5.854	157.392	0.9529
120	-49.359	-27.954	-26 630	-25.846	-9.251	-6 334	154.186	0.9550
105	-49.620	_27.852	-27 242	-26.062	-9.221	-6.805	153 184	0.9570
90	-49.839	-27.666	27.242	26.002	-9.306	-7 224	154 892	0.9602
75	50.009	-27.000		-20.237	9.500	7 5 39	150 574	0.9682
100 810	-30.009	-27.410	20.523	-20.572	-9.552	-1.529	159,524	0.9082
100./13	-49.392	-27.868	2/.1/1	-26.040	-9.219	-0./33	153.167	0.9568
(f) Nine-el	ectron species							
H₂O [−]								
180	_17 277		1 952	_1 953	6 162	15 820	26 885	1 0321
165	-17.277	-0.420	-1.855	-1.633	6 242	15.029	20.003	1.0231
105	-17.329	-0.392	-2.037	-1.945	0.242	15.045	24,107	1.0277
130	-17.439	-0.201	-2.307	-2.127	6.309	13.222	16.975	1.0378
133	-17.504	-7.973	-3.248	-2.275	0.965	14./82	15.070	1.0452
120	-17.000	-/.496	-3.915	-2.353	7.487	14.356	16.228	1.0509
105	-17.710	-6.819	-4.549	-2.371	7.952	13.907	20.767	1.0592
90	-17.704	-5.954	-5.124	-2.320	8.317	13.487	29.418	1.0692
75	-17.585	-4.899	-5.649	-2.192	8.465	13.078	40.415	1.0874
133.487	-17.571	-7.931	-3.317	-2.287	7.010	14.731	15.544	1.0464
H ₂ F ^b								
180	-38.419	-18.148	-14.953	-14.953	-5.065	3.745	57.995	0.9545
165	-38.483	-18.152		-15.005	-4.996	3.676	58.758	0.9534
150	-38.623	-18.123	-15.408	-15.120	-4.813	3.497	60.484	0.9519
135	-38.762	-18.000	-15.843	-15.228	-4.566	3.273	-62.107	0.9500
120	-38.851	-17.748	-16.315	-15.288	-4.309	3.048	-62.944	0.9489
105	-38.877	-17.364	-16.793	-15.284	-4.091	2.867	-63.004	0.9482
90	-38.836	-16.861	-17.272	-15.210	-3.963	2.777	-62.931	0.9483
112.880	-38.873	-17.582	-16.542	-15.295	-4.197	2.955	-63.042	0.9484
(g) Ten-ele	ctron species							
H ₂ F								
180	-28 663	-8 863	-5 249	-5.249	0.703	12.117	-68.386	0.9998
165	-28 642	-8 788	-5 3 29	-5 229	-0.606	12,110	-66.820	0 9997
150	_28 578	-8 563	-5 543	-5 164	-0.340	12.093	-62.263	0 9992
135	-28.464	_8 1 83	-5 834	_5 048	0.035	12.093	-55 166	0.9984
120	-28 284	-7.643	-6 147	-4 866	0.055	12 100	-46 363	0 9972
105	-20.204	-6 020	-6.147	4 602	0.430	12.100		0.2212
00	-20.021	-0.737	-0.44/	4 227	1 227	12.103	-57.172	0.7703
7U 75	-21.032	-0.720	-0.0/4	-4.23/	1.227	12.303	-27.401	0.37/0
13	-27.100	-1.025	-3.079	-3./09	1.432	12.401	-23.314	1.0070
180	28.663	-8.863	5.249	-5.249	-0.703	12.117	68.386	0.9998

^a Interpolation. ^b Fails to converge when <HMH = 75°.

Fig. 1. Orbital energies as a function of H-O-H angle in H₂O.

Fig. 2. Heat of formation of neutral MH_2 as a function of H-M-H angle.

cations and anions respectively. Equilibrium values for BH₂, CH₂ (³B₁), NH₂ and H₂O are computed to be, respectively, (kcal mol⁻¹): +56.37, +91.55,

Fig. 3. Heat of formation of cationic $(MH_2)^+$ as a function of H-M-H angle.

Fig. 4. Heat of formation of anionic $(MH_2)^-$ as a function of H-M-H angle.

+30.08, and -53.61. These may be compared with the experimental values (kcal mol⁻¹): +48, +95(\pm 5), +40.3, and -57.80 [9].

TABLE II. Molecular Properties at Equilibrium.

(a) Neutral r	nolecules							
Number of	Formula	State	<hmh th="" °<=""><th>d/(M–H)/Å</th><th>$\Delta H_{f}^{\Theta}/kcal mol^{-1}$</th><th>Electron</th><th>Population</th><th>Dipole Moment/D</th></hmh>	d/(M–H)/Å	$\Delta H_{f}^{\Theta}/kcal mol^{-1}$	Electron	Population	Dipole Moment/D
electrons						M	Н	
5	BH ₂	² A ₁	130.16	1.1984	+56.37	2.820	1.090	0.321
6	CH ₂	¹ A ₁	100.18	1.1222	+100.24	3.812	1.094	1.043
6	CH ₂	³ В1	135.80	1.0781	+91.55	4.146	0.927	0.896
7	NH ₂	² B ₁	102.21	1.0360	+30.08	5.092	0.954	1.457
8	H ₂ O	¹ A ₁	104.03	0.9481	-53.61	6.506	0.747	2.108
9	H ₂ F	² A ₁	112.88	0.9484	-63.04	7.220	0.890	0.716
(b) Cations								
Number of	Formula	State	<hmh td="" °<=""><td>d(M–H)/A</td><td>$\Delta H_{f}^{\Theta}/kcal mol^{-1}$</td><td>Electron</td><td>Population</td><td></td></hmh>	d(M–H)/A	$\Delta H_{f}^{\Theta}/kcal mol^{-1}$	Electron	Population	
electrons						М	Н	_
4	BH ⁺ ₂	$1\Sigma_g^+$	180.00	1.1849	+271.64	2.280	0.860	
5	CH ⁺ ₂	$^{2}A_{1}$	136.85	1.0928	+314.99	3.278	0.861	
6	NH_2^+	$^{1}A_{1}$	106.02	1.0386	+289.84	4.368	0.816	
6	NH_2^+	³ B ₁	140.57	1.0000	+259.01	4.504	0.748	
7	H₂O ⁺	² B ₁	108.42	0.9745	+231.54	5.798	0.604	
8	H ₂ F ⁺	¹ A ₁	106.71	0.9568	+153.17	7.132	0.434	
(c) Anions								
Number of	Formula	State	<hmh td="" °<=""><td>d(M-H)/Å</td><td>$\Delta H_{f}^{\Theta}/kcal mol^{-1}$</td><td>Electror</td><td>Population</td><td></td></hmh>	d(M-H)/Å	$\Delta H_{f}^{\Theta}/kcal mol^{-1}$	Electror	Population	
electrons						M	Н	
6	BH ₂	¹ A ₁	99.24	1.2757	+29.24	3.394	1.303	
6	BH_2^{-}	³ B ₁	128.14	1.1770	+34.55	3.942	1.029	
7	CH_2^{-}	${}^{2}B_{1}$	99.89	1.1440	+100.60	4.628	1.186	
8		$^{1}A_{1}$	99.06	1.0662	+56.44	5.768	1.116	
9	Н₂О	${}^{2}A_{1}$	133.49	1.0464	+15.54	6.726	1.137	
10	H ₂ F ⁻	${}^{1}\Sigma_{g}^{+}$	180.00	0.9998	-68.39	7.176	1.412	

TABLE III. H... H Distances at Equilibrium.

MH ₂ ⁺	₫(H…H)/Å	<hmh th="" °<=""><th>MH₂</th><th>d(HH)/Å</th><th><hmh th="" °<=""><th>MH₂</th><th>d(HH)/Å</th><th><hmh th="" °<=""></hmh></th></hmh></th></hmh>	MH ₂	d(HH)/Å	<hmh th="" °<=""><th>MH₂</th><th>d(HH)/Å</th><th><hmh th="" °<=""></hmh></th></hmh>	MH ₂	d(HH)/Å	<hmh th="" °<=""></hmh>
BH ⁺ ₂	2.3698	180.00	_		-	_	-	_
CH ⁺ ₂	2.0324	136.85	BH ₂	2.1736	130.16	_	-	
$NH_2^{+}(^1A_1)$	1.6591	106.02	$CH_2(^1A_1)$	1.7215	100.18	$BH_2(^1A_1)$	1.9436	99.24
$NH_{2}^{+}(^{3}B_{1})$	1.8828	140.57	$CH_2({}^3B_1)$	1.9978	135.80	$BH_2^{-}(^3B_1)$	2.1170	128.14
H_2O^{\dagger}	1.5809	108.42	NH ₂	1.6127	102.21	CH ₂	1.7513	99.89
H_2F^*	1.5354	106.71	H ₂ O	1.4945	104.03	NH ₂	1.6222	99.06
_		_	H ₂ F	1.5806	112.88	H ₂ O ⁻	1.9228	133.49
_	-	-	-	_		H ₂ F	1.9996	180.00

Molecular Structures at Equilibrium

Table II records the values of <HMH and d(M–H) corresponding to the minimum energy. For compari-

son, some experimental values are: BH_2 , $<HBH 131^{\circ}$, d(B-H) 1.18 Å [10]; $CH_2(^{1}A_1)$, $<HCH 102.4^{\circ}$, d(C-H) 1.111 Å [11]; $CH_2(^{3}B_1)$, $<HCH 136 \pm 8^{\circ}$,

d(C-H) 1.078 Å [12, 13]; NH₂, <HNH 103.4°, d(N-H) 1.024 Å [10]; H₂O, <HOH 104.53°, d(H-O) 0.9571 [14]: in general, the agreement is excellent. *Ab initio* computations, but no experimental results, have been reported for NH₂⁺ [3], H₂O⁺ [4], and H₂F⁺ [5]; the angles predicted at the energy minima are: NH₂⁺ (³B₁), ~140° [3]; NH₂⁺ (¹A₁), ~120° [3]; H₂O⁺, 112.5° [4]; H₂F⁺, 116° [5].

In Table III are listed the formally non-bonded distances d(H...H) corresponding to the equilibrium geometries: at small angles $\langle HMH$, the minimal values of d(H...H), in BH_2^- (1A_1), CH_2 (1A_1), NH_2 , H_2O and H_2F^+ , correspond to computed effective non-bonded radii for hydrogen atoms as follows: H_B , 0.97 Å, H_C , 0.86 Å; H_N , 0.81 Å; H_O , 0.75 Å; H_F , 0.77 Å. The corresponding experimental values are: H_B , 1.07 Å; H_C , 0.87 Å; H_N , 0.80 Å; H_O , 0.76 Å.

The geometrical data in Tables II and III give full support to the generalisations of Walsh [1] and Gimarc [2], namely that species HMH having either four or ten valence-shell electrons will have linear ground states, and that those having between five and nine will have non-linear ground states, with generally wider angles for five and nine electrons, and values closer to 100° for six, seven, and eight electrons. Similarly, on ionisation, the removal of an entirely non bonding electron from $1b_1$ occasions very little geometrical change, as in the ionisations:

 $\begin{array}{ll} H_2O & \rightarrow H_2O^+ \\ NH_2^- & \rightarrow NH_2 \rightarrow NH_2^+(^1A_1) \\ CH_2^- & \rightarrow CH_2\ (^1A_1) \\ CH_2\ (^3B_1) & \rightarrow CH_2^+ \\ BH_2^-(^3B_1) & \rightarrow BH_2 \end{array}$

Six-electron Species

There has been immense interest shown, both experimentally [11-13] and theoretically [6, 15] in the six-electron fragment CH₂, but rather little in the analogous BH₂⁻ and NH₂⁺. MINDO/3 calculations have been reported previously [15] for CH₂, and our own results concur. In each of the triplets the orbital ordering is, for <HMH of 180°:

 $(1\sigma_{g}^{*})(1\sigma_{u}^{*})(1\pi_{u})(2\sigma_{g}^{*})(2\sigma_{u}^{*})$

in which the two components of $1\pi_u$ are each singly occupied, and of identical energy (cf. Table I): when the singlets CH₂ and NH₂⁺ are constrained to be linear, with double occupation of one component of $1\pi_u$, the occupied orbital is substantially tighter bound than the unoccupied, but the mean of the two energies is exactly that in the corresponding triplet. The energies of the four remaining orbitals $1\sigma_g^*$, $1\sigma_u^*$, $2\sigma_g^*$, and $2\sigma_u^*$ are identical in CH₂ (¹A₁) and CH₂ (³B₁), and in NH₂⁺ (¹A₁) and NH₂⁺ (³B₁). In the linear configuration of BH₂⁻ (¹A₁) the orbital ordering is

$(1\sigma_{\mathbf{g}}^{*})(1\sigma_{\mathbf{u}}^{*})(2\sigma_{\mathbf{g}}^{*})(1\pi_{\mathbf{u}})(2\sigma_{\mathbf{u}}^{*})$

which readily accommodates a singlet configuration. BH₂⁻ (³B₁) is the only boron species studied here for which $1\pi_{\rm u}$ is calculated to be tighter bound than $2\sigma_{\rm g}^*$.

In CH₂ and NH₂⁺, the triplets are calculated to be the more stable by 8.69 and 30.83 kcal mol⁻¹ respectively, whereas in BH₂⁻ the singlet is calculated to be the more stable by 5.31 kcal mol⁻¹: the variations of ΔH_f^{\ominus} with \langle HMH for singlets and triplets of BH₂⁻, CH₂, and NH₂⁺ are shown in Fig. 5.

Fig. 5. Heat of formation of singlet and triplet NH_2^+ , CH_2 and BH_2^- as a function of H-M-H angle.

Ionisation Energies

The valence-shell vertical ionisation energies calculated for neutral H₂O are (eV): 12.76, 14.36, 17.28, and 29.61, the first three of which correspond well with those observed in the He-I photoelectron spectrum [16]: 12.61 eV, 13.89 eV, and 17.20 eV. In Table IV are listed calculated values of the first ionisation energies: vertical ionisation energies are calculated, using Koopmann's theorem, from the binding energies of the HOMO; adiabatic ionisation energies are calculated from the total energies of the parent and its ionised daughter, both at equilibrium. The adiabatic energies correspond reasonably well with the few experimental data available [17], thus: BH₂, 8.12 eV; CH₂ (³B₁), 11.82 eV; NH₂, 11.4 eV (probably ionisation to $({}^{1}A_{1})NH_{2}^{+}$); and H₂O, 12.61 eV. It is noteworthy that while in diamagnetic species, the adiabatic ionisation energy is always calculated to be slightly lower than the vertical ionisation energy, as expected, even in unbound species such as NH_2^- and feebly bound species such as H_2F^- , in paramagnetic species, the vertical ionisation energy is invariably seriously underestimated: if this is a

TABLE IV. First Ionisation Energies/eV.

	Vertical	Adiabatic
BH ⁺ ₂	19.88	_
BH ₂	5.36	9.34
$BH_{2}^{-}(^{1}A_{1})$	1.57	1.18
$BH_{2}^{-}({}^{3}B_{1})$	-3.80	0.95
CH ₂	14.13	_
$CH_{2}(^{1}A_{1})$	9.95	9.31
$CH_2({}^{3}B_1)$	3.83	9.69
CH_2^-	-5.46	-0.39^{a} , -0.02^{b}
$NH_{2}^{+}(^{1}A_{1})$	21.57	-
$NH_{2}^{+}(^{3}B_{1})$	15.54	_
NH ₂	5.04	9.93 a , 11.26 ^b
NH ₂	-0.80	-1.14
H₂O ⁺	19.20	_
H ₂ O	12.76	12.37
H_2O^-	-7.01	-3.00
H ₂ F ⁺	26.04	-
H ₂ F	4.20	9.28
H ₂ F	0.70	0.23

^a Ionisation to $({}^{3}B_{1})$ MH₂⁺. ^b Ionisation to $({}^{1}A_{1})$ MH₂⁺.

systematic error in MINDO/3, it is readily recognised by comparison of vertical and adiabatic ionisation energies.

References

- 1 A. D. Walsh, J. Chem. Soc., 2260 (1953).
- 2 B. M. Gimarc, J. Am. Chem. Soc., 93, 593 (1971).
- 3 S. Y. Chu, A. K. Q. Siu and E. F. Hayes, J. Am. Chem. Soc., 94, 2969 (1972).
- 4 W. Meyer, Int. J. Quantum Chem., 55, 341 (1971). 5 H. Lischka, Theor. Chim. Acta, 31, 39 (1973).
- 6 For a review, see: C. Thomson, in 'Theoretical Chemistry', Chemical Society Specialist Periodical Reports, The Chemical Society, London, 2, 83 (1975).
- 7 R. C. Bingham, M. J. S. Dewar and D. H. Lo, J. Am. Chem. Soc., 97, 1285 (1975).
- 8 QCPE, Chemistry Department, Indiana University, No. 309.
- 9 JANAF Thermochemical Tables, Dow Chemical Co., Midland, Michigan (1965).
- 10 G. Herzberg, 'Infra-red and Raman Spectra', D. Van Nostrand, Princeton, N. J. (1945).
- 11 G. Herzberg and J. W. C. Johns, Proc. Roy. Soc., A295, 107 (1966).
- 12 G. Herzberg and J. W. C. Johns, J. Chem. Phys., 54, 2276 (1971).
- 13 E. Wasserman, V. J. Kuck, R. S. Hutton and W. A. Yager, J. Am. Chem. Soc., 92, 7491 (1970).
- 14 W. S. Benedict, N. Gailar and E. K. Plyler, J. Chem. Phys., 24, 1139 (1956).
- 15 M. J. S. Dewar, R. C. Haddon and P. K. Weiner, J. Am. Chem. Soc., 96,
- 16 D. W. Turner, C. Baker, A. D. Baker and C. R. Brundle, 'Molecular Photoelectron Spectroscopy', Wiley, London (1970).
- 17 V. I. Vedeneyev, L. V. Gurvich, V. N. Kandrat'yev, V. A. Medvedev and Ye. L. Frankevich, 'Bond Energies, Ionisation Potentials, and Electron Affinities', Arnold, London (1966).