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A ligand field analysis has been carried out for a 
number of substitution reactions in square planar 
Pt(II) complexes. The complete set of 12 rate constants 
describing the progressive transformation of MA, to 
MB4 and vice versa has been considered in detail. 

Each metal-ligand interaction is characterized by 
two independent spectrochemical parameters. The dif- 
ferent ligands are assumed to make additive contribu- 
tions to the l&and field matrix. On the basis of this 
model, the ligand field activation energies are calculated 
to be in exactly the same order as would be anticipated 
from the experimentally observed rate constants. 

Introduction 

Ligand field stabilization energy (LFSE) and ligand 
field activation energy (LFAE) have been shown to 
be very useful concepts in the kinetic study of certain 
transition metal complexesr”. Of course, the LFAE is 
only one of the different contributions to the total acti- 
vation energy; changes in the metal-ligand and the 
ligand-hgand interactions often constitute equally im- 
portant or even more important contributions. Yet, in 
some cases, it has been possible to rationalize the rela- 
tive inertness of otherwise comparable complexes by 
considering only the ligand field part of the activation 

* To whom requests for reprints should be addressed. 

energy. It is the purpose of this note to show how this 
line of reasoning might be extended, so as to explain 
qualitatively the relative magnitude of a series of reac- 
tion rate constants. 

Substitution Reactions in Square Planar Pt(II) 
Complexes 

A general scheme of the successive substitution reac- 
tions of a square planar ML, complex is shown in 
Figure 1. It is not easy to obtain the complete set of 
12 rate constants describing the progressive transfor- 
mation of Ma to MB4 and vice versa. The best data 
seem to be provided by the work of Elding4*. Table I 

Figure 1. Substitution reactions of a square planar ML com- 
plex. 

TABLE I. Rate Constants (at 25” C) of Pt(I1) Substitutions PtA,B&. z PtA,lBs, where A = CT, Bi and 

B = H,O. The results have been taken from the work of Elding4-8; the rate constants are expressed in s-r for the 
aquation reactions (k, through k4) and in/If-‘8’ for kr_ through k4. Values in parentheses are uncertain, 
The subscripts of the rate constants refer to Fig. 1. 

A = Cl- A = Br- A = Cl- A=Br- 

kl 
k 2c 
k 2t 
k 3c 

3.6 x lo-’ 

6x 1Cr5 
2.8 x lo* 

2 X lo-’ 
1P 

(3 X 10-y 

1.9x 10-4 

6X10-4 
1.4 x l(P 

lo+ 
_ 

_ 

kr- 

kzc- 
kzt 
k,, 
klr- 

ke 

2.8 X 10” 9 x 10-2 

7.5 x 1o-2 3.3 
4.6 X lo-’ 1.8~ lOA 

1Cr3 3.3 X 1o-2 
0.53 - 

(3 X 10-y - 
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shows the rate constants of the successive aquation 
reactions of Pt(I1) chloride and bromide complexes. 

Both the forward and the backward reaction rates 
span a range of approximately four orders of magni- 
tude. No obvious or simple regularity is apparent from 
the data in Table I, except for the fact that one finds 
the same relative sequance in both cases. This sequence 

k3t > kzc > k, (> 4) > ksc > kzt 
kJt_ > kgc- > (k,--)) kl_ > k3=- > kzt- (I) 

may be a general characteristic for the Pt(I1) substitu- 
tion.? ; as far as the data are available, it also applies 
to the hydrolysis rates of mixed chloride-ammonia 
complexes2’9, and to the direct chloride-ammonia 
exchange.” 

There are very good reasons to believe that the dif- 
ferent substitutions of Figure 1 all proceed in an iden- 
tical manner via a transition state of enhanced coordi- 
nation number’,ll. Indeed, a dissociative mechanism 
does not explain the observed stereospecificity of the 
reactions, nor does it explain the large differences be- 
tween kZc and kZt. A schematic representation of a 
substitution in a square planar complex is shown in 
Figure 2, where the transition state is taken to be a 
regular trigonal bipyramid. Although some details may 
be different, the main features of Figure 2 should re- 
present a reasonably accurate description of the reac- 
tion path. 

From the temperature dependence of the rate con- 
stants, it appears that the activation entropy does not 
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vary too much in different square planar substitu- 
tion? ; apparently, there is some justification in limit- 
ing oneself to the energy changes of the system in an 
attempt to explain the kinetic behaviour. 

Characterization of the d-Orbital Energies 

The angular overlap model associates two parameters 
to any given metal-ligand interaction’3-‘7. Consider 
one ligand A, situated on the z-axis; the d-orbital set 
gives rise to three different energy levels EAU (z’), 
EAZ (xz, yz) and EA6 (xy, x2-y’), The energy splittings 

can be considered as empirical parameters, having an 
immediate and obvious chemical significance. 

If more ligands are added to the coordination sphere 
of the central metal ion, the resulting energy matrix 
elements will be a function of (i) the spectrochemical 
parameters associated with each ligand, (ii) the angular 
position of the different ligands. 

As an example, consider the energy matrices relevant 
to the reaction 

MA, + B-+M(A2B)(A2)+MA3B + A 

For the square M& molecule, one finds a diagonal 
matrix. For the transition state, one obtains the follow- 
ing matrix: 

M(AzB)(&) (8’ (x4’ (YZ)' (XY)’ (x*-yz)' 

(YZ)’ $+,*+Esn (3) 

(XY)’ +d+$Allf$An+EBn 

(x2-y*)’ +.,” +$$‘+$E,.,n+$~“++Ee” 

For the square planar MA3B molecule, one finds: 

MA3B z xz YZ XY XZ-YZ 

xz EA= + EBR + 2EAd 

YZ 2EA=+EA”+EBd (4) 

XY 3 EA= + Eg= 

x2-yZ 
.~ 
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Figure 2. Associative substitution reaction proceeding vih a 
trigonal bipyramidal transition state. 

In the d8 complexes under consideration, the LFSE 
is given by twice the energy of the non-occupied orbital 
- at least when this energy is referred to the barycenter 
of the d-orbital set. The relevant energies can be cal- 
culated from matrices such as (3) and (4). Carrying 
out an exact diagonalization would in general lead to 
unwieldy expressions. Instead, it is well to realize that 
the off-diagonal elements are in general small quanti- 
ties. If A = B, both matrices (3) and (4) become 
completely diagonal: if A =l= B, the diagonal elements 
will still provide an acceptable first approximation for 
the orbital energies. Therefore, one can write: 

Hij’ 
Ei = Hii + Z ~ 

j dEij 
(5) 

and similarly: 

LFSE = LFSE(‘) + LFSE(*) 

where LFSE”) contains the contributions of the diago- 
nal elements, and LFSE(*) contains the (much smaller) 
contributions arising from the offdiagonal elements. 

Ligand Field Stabilization and Activation Energies 

Using the procedure and the notation introduced in 
the previous Section, one finds the values of LFSE(‘) 
and LFSE(*) shown in Tables II and III 

As an example, Figure 3 shows a complete d-orbital 
correlation diagram for the‘ reaction MA, + B+MA3B 
+ A. The LFSE corresponding to the square planar 
molecules (MA,, MA3B) and the trigonal bipyrami- 
da1 transition state (MA2BA2) can be found from 
Tables II and III. 

An obvious symmetry is apparent from the energy 
expressions, in that the LFSE of MA,B4_, can be ob- 
tained from the LFSE of M&-,B, by interchanging 

@A, nA) and (oB, na); a similar remark can be made 
on the LFSE of the trigonal bipyramids. As a matter 
of fact, the different reactions can be subdivided into 
groups of two, complementary reactions, as for instance: 

(k2J 
and 

MB3AA-M(B*A)(BA)+cis-MB2A2 (k3c-) 

All energy expressions, both LFSE and LFAE, relevant 
to the kJc- reaction can be obtained from the k2c 
reaction, by interchanging (uA,nA) and (oB,rcB). The 
exchange-related reactions are (k,, k,_), (k2c, ksc_), 

(k,,, kJ+), (kzc, k2+), (k3i, k2i-J and (k4, kr-). 
If also the LFAE is separated into LFAE”’ (main 

contribution, due to the diagonal elements) and 
LFAEc2’ (correction due to the off-diagonal elements), 
one obtains for the forward reactions 

LFAE(‘) = (1/10)(&r, + ro,, + Y_T~) (7) 

and for the backward reactions 

LFAE”’ = (l/lO)(&rA + tuA + LKJB) (8) 

where the coefficients r, s, t and u are shown in Table IV 

TABLE II. Ligand Field Stabilization Energies LFSE = LFSE(‘) + LFSE(‘) for the different square planar 
complexes MAnBen. In general it can be shown that LFSE = lll10[nuA+(4-n)ua]-4/5[nn~+(4-n)za]. We 
define Au = uB+,. 

MA4 

MA3B 

US-MA,BZ 

tran.+MAzBz 

MAB3 

MB4 

LFSE”’ LFSE@) 

(1/10)(44u~-327r*) 0 

(1/10)[‘(33a~-24~~) + (llua-&~a)] (3/4)& 
A a 

(1/10)[(220,-l&,4) + (220,-ltikl)] 0 

(1/10)[(220,-lb,) + (22u,-167%)] (3i2)+& 

(l/lO)[(llu,-&r,) + (3%,-2&a)] ,,),,d 
B A 

(l/10)(440,-32,) 0 
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TABLE III. Ligand Field Stabilization Energies LFSE = LFSE(‘) + LFSE@) for the Different Trigonal Bipyramidal 

Transition States. Au = oB-uA. 

LFSE”’ LFSE”’ 
__ 

M(&)(&) (7/2)aA-~, 0 

kl M(&B)(&) (1/1o)(34a,+o~)-(1/s)(lhn,+dza) 
3 (do)’ 

17aA-4ua -122, 

kz, M(&B)(AB) (1/10)(180A+ 17u,)-(1/5)(12Jc,+&r,) 
am 

%,&+4aa-l2xA 

kzt M(AB,)(A,) (1/10)(33u,+2ua)-(1/s)(12n,+8n,) 
3 (Au)’ 

12u,+uB-l2xa 

k.?c M(ABz)(AB) (l/10)(170,+ l&a)-(1/5)(&r, + 12X8) 
I’ 

40~+9ua-l2Jr” 

k 3t W&B)(Bz) (~/10)(2u,+330R)-(1/5)(Xn*+ 12.%) 
3(Au)’ 

u~+12ua-l2n~ 

k4 M(ABz)(Bz) (l/10)(0, + 34n,)-(1/5)(4n,+ 1tiB) 
3 (Au)* 

-40,+17ua-12za 

M(BI)(Bz) (7/2)(78-&a 0 

A 

Figure 3. Orbital Correlation Diagram for the Reaction Pt& + B+PtAzB + A via a trigonal bipyramidal transition 

state. 

If oA<oB, this leads to a sequence of the reaction con- and 8, but they can hardly be expected to change the 
stants which is almost precisely the one found experi- relative order of the rate constants. It is true, though, 
mentally and given in Eq (1). that the corrected values of ki and k4 will no longer 

The seemingly irregular sequence of Eq (1) can thus be equal. Indeed, it appears from Tables II and III 
be traced back directly to the nature of the different that the second order correction to the reaction (I) 
trigonal bipyramidal transition states. If Au remains is given by 
small, the “second-order” contributions given in 
Table II are not very important. They will affect the 3 (da)* - 
linearity of the LFAE expressions implied by Eqs 7 

LFAE@’ = _ 
17040a-12.ir~ 

(9) 
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TABLE IV. The r, s, t and u Coefficients of the LFAE”) 
Expressions. Obviously r + s = t + u = 9 in all cases; indeed, 
the twelve reactions under consideration reduce to M& + 

A+MA5, if A = B. In this case the LFAE equals (l/10) 
(8x, + 9~~). If a,>~,, the (3t + ) reactions have the smallest 

LFAE(‘): (1/10)(8za+2Ou,-llaa) and (1/10)(&t,+ 
9uA) respectively; the reactions are in order of increasing 
activation energy, that is, in order of increasing s (or u) co- 
efficients. 

Conclusion 

The experimental constants for the Pt(I1) substitu- 
tion reactions are in the same sequence as predicted 
from LFAE calculations. The only relevant parameters 
in the’ LFAE expressions are Us and uB; whether one 
particular substitution reaction is faster or slower than 
another one, depends only on the relative u-bonding 
(or antibonding) abilities of A and B. This is not un- 
reasonable, since neither of the two relevant orbitals 
- (x*-y*) in the plane square and (2) in the trigonal 
bipyramid - exhibits any n-bonding with the ligands. 

kn 
r S 

k, 
t U 

k 3t . 20 -11 k 3& 9 0 

k k:fk, 15 4 k &:k,_ 4 10 -1 -1 1; 

k 3c 5 4 k -6 15 
k Zt 0 9 k:: -11 20 

and for reaction (4), one obtains 

LFAE”’ = (3/4) ,,“:‘: - 
3 (Au)* 

17aj3--4u*-12.zB 
(10) 

B A 

Therefore if Au becomes larger, one expects reaction 
(1) to become faster than reaction (4). Similarly, 
reaction (4-) will become faster than l- for small 
values of Au; for larger values of Au, reaction l- will 
become predominant. Figure 4 shows how the LFAE 
varies as a function of Au; arbitrarily nA and nB were 
kept constant and equal. 

b 

/ / 
/’ 

/I/ 
%1-f 

I 

Figure 4. Qualitative variation of the LFAE for ‘the forward 
(a) and backward (b) reactions, as a function of do = uB-uA. 
The parameters nA and n, were arbitrarily set equal to each 
other and to l/20.,,. 

It is obvious that the ideas outlined in the previous 
sections are purely qualitative; the absolute values 
that could be calculated from Eqs 7-10 can certainly 
not be expected to match the experimental data. Yet, 
the present approach allows for a qualitative insight 
into the nature of the substitution reactions. It can 
also be extended so to contribute to a better under- 
standing of the kinetic hzrans effect.” 
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