Review Paper

Structural Studies of the Pseudohalides of the s and p-Block Elements

C. GLIDEWELL

Chemistry Department University of St. Andrews Fife, Scotland KY16 9ST, U.K. Received June 11. 1974

Contents

- 1. Introduction
- **2.** Pseudohalides of Hydrogen
- 3. Pseudohalides of Group I
- 4. Pseudohalides of Group II
	- A. Group IIA
	- B. Group IIB
- 5. Pseudohalides of Group III
- 6. Pseudohalides of Group IV
- 7. Pseudohalides of Group V
- 8. Pseudohalides of Group VI
- 9. Pseudohalides of Group VII
- 10. Inter-pseudohalogens
- 11. Polymeric Pseudohalogens
- 12. Discussion
- 13. References

1. Introduction

The purpose of this review is to present a survey of the structures of the pseudohalide derivatives of all the s and p block elements. The original definition of pseudohalides by Birckenbach and Kellerman¹ encompassed the ions: CN⁻, NCO⁻, NCS⁻, NCSe⁻, NCTe⁻ and N_3 ⁻. No structural data are available for tellurocyanate, NCTe⁻, which has been prepared only recently²; added to the original list, for the present purposes, are fulminate CNO⁻, cyanamide NCN⁻², and thionylimide, NSO-. Of these pseudohalides, cyanide bears the closest chemical resemblance to the halides proper: on relaxing sufficiently the demand of chemical similarity, almost any species X^- could, to some extent, be regarded as a pseudohalide. Nevertheless, fulminate is sufficiently similar to cyanide, and cyanamide and thionylimide are sufficiently similar to azide to justify inclusion.

The great majority of the structures discussed herein have been determined by unambiguous methods: in the solid state by neutron or X-ray diffraction, in the vapour phase by electron diffraction or by rotational spectroscopy, either Raman or microwave. Almost inevitably a number of the simpler structures were determined many years ago, before the introduction of the sector method of electron diffraction, or before the introduction of the least squares method to. the refinement of structures deduced from diffraction experiments.

Bond lengths are quoted throughout in Angstroms, bond angles in degrees: estimated standard deviations are given in parentheses. Older structures generally have no errors quoted. Except where explicitly stated otherwise, structural parameters for solid state compounds are the mean values of structurally equivalent but crystallographically non-equivalent parameters.

2. **Pseudohalides of Hydrogen**

A. Hydrogen Cyanide and Fulminic Acid

In the vapour phase both hydrogen cyanide, HCN, and its N-oxide fulminic acid, HCNO, are linear molecules. For hydrogen cyanide, microwave spectroscopy has given³ the bond lengths $r(H-C)$, 1.063(1)Å; and $r(C-N)$, 1.155(1)Å: distances found⁴ in a microwave study of fulminic acid are $r(H-C)$ 1.027(1)Å; $r(C-N)$, 1.161(15) \AA ; and r(N-O), 1.207(15) \AA . The rather large uncertainties in the C-N and N-O distances of fulminic acid are a consequence of the closeness of the nitrogen atom to the centre of mass: however the partitioning of the $C \cdots O$ distance in fulminic acid $(r(N-O)/r(C-N) = 1.040)$ is the same as in methyl fulminate⁵ (r(N-O), 1.2189(4)Å; r(C-N), 1.1671(6) \hat{A} ; r(N-O)/r(C-N) = 1.044).

The short N-O distance in fulminic acid (and methyl fulminate), may be compared with those in cis-azobenzene dioxide⁶, 1.264(4)Å, and trimethylamine N-oxide⁷, 1.388(5)Å. For neither hydrogen cyanide³ nor trimethylamine' does the formation of the N-oxide significantly alter the rest of the geometry.

The structure of hydrogen cyanide has also been determined' in the solid phase; the linear molecules form infinite linear chains. The repeat distance along the chain is 4.34A, and a Fourier refinement led to a

 $X = O$ or S.

C-N distance of 1.154\AA , while from a least squares refinement a value of $1.19(15)$ Å was obtained. Whatever the precise value of $r(C-N)$ in solid hydrogen cyanide, this gives for the $C(-H) \cdots N$ distance a value of 3.15-3.19Å, so placing the $H \cdots N$ distance in the range 2.09-2.13A.

B. Isocyanic Acid and Isothiocyanic Acid

Microwave studies of isocyanic acid¹⁰, HNCO, and isothiocyanic acid 11 , HNCS, have yielded the groundstate geometrical parameters set out in Table I. The N-C-X $(X = O, S)$ fragment of each molecule was assumed to be linear.

In isocyanic acid, the C-O distance, 1.171Å, is typical of double-bond distances between singly-connected oxygen and doubly-connected carbon, being comparable with the value $1.1619(5)$ observed¹² in carbon dioxide, but is shorter than the typical distance between singly-connected oxygen and triply connected carbon; for example, in acetaldehyde the C-O distance is $1.2155(20)$ Å¹³. The C-S distance in isothiocyanic acid 1.560A is similarly close to that found in carbon disulphide $1.5529(50)$ Å¹⁴, but substantially shorter than that observed¹⁵ in thiourea, $1.720(9)$ Å.

Likewise, the C-N distances in these two acids. 1.207Å and 1.216Å are shorter than the C-N distance, 1.27A, found between doubly-connected nitrogen and triply-connected carbon in dimethyl glyoxime¹⁶.

An X-ray study¹⁷ of crystalline HNCO revealed linear NCO fragments with $r(N-C)$ of 1.18(2)Å and $r(C-O)$ of 1.18(2)A: the hydrogen atoms were not found, but the molecules appear to be joined by $N \cdot \cdot \cdot H-N$ hydrogen bonds with the $N \cdot \cdot \cdot N$ distance approximately 3.07A.

A microwave study of gaseous hydrazoic acid has vielded¹⁸ the following geometrical parameters, by making the assumption that the $N_a-N_b-N_c$ fragment is linear: $r(H-N_a)$, 0.975(15)Å; $r(N_a-N_b)$, 1.237(2)Å; $r(N_b-N_c)$, 1.133(2)Å; and $\lt (H-N_a-N_b)$, 114.1(0.5)°. The N_b-N_c distance differs little from the corresponding N-N distance, $1.1286(2)$ Å in the isoelectronic nitrous oxide¹⁹, nor is the N_a-N_b distance appreciably different from the N-N bond lengths in azomethane²⁰ 1.24 Å and azobenzene, $1.243(\overline{3})\,\mathrm{A}^{21}$. The angle at N_a of 114.1° is however markedly different from the

corresponding angles in isocyanic and isothiocyanic acids, 128.1" and 135.0" respectively.

If we regard isocyanic and hydrazoic acids as CO and N_2 complexes respectively of the fragment HN, then the angles observed at N_a in these compounds are consistent with the view that CO is a better π -bonding group than N_2 , as found in transition metal complexes of CO and N_2 .

Alternatively, the structures of HNCO and $HN₃$ may be compared using the approach of Sidgwick and Powell²². Removal of groups surrounding the atom N_a in closed shell configurations and their subsequent replacement as two electron donors leads to the conclusion that whereas in HN_3 , N_a is surrounded by eight electrons, in HNCO it is surrounded by only six, so that a wider inter-bond angle is expected in HNCO.

D. Cyanamide

The unsubstituted molecule carbodiimide $HN=$ C=NH appears to be unknown, only its isomer cyanamide H₂NCN having been isolated. This is more properly regarded as a cyanide of Group V and will be discussed in Section 7.

E. Thionylimide

Thionylimide has been studied by microwave spectroscopy²³, and found to have a *cis*-planar structure with r(H–N), 1.03\AA ; r(N–S), 1.51\AA ; r(S–O), 1.45\AA ; \langle (H-N-S), 116°; and \langle (N-S-O), 121°. The S-O distance and the interbond angle at sulphur may be compared with the corresponding parameters in the isoelectronic sulphur dioxide²⁴, $1.431(2)$ Å and $118.5(1.0)$ ^o respectively.

C. *Hydrazoic Acid* 3. **Pseudohalides of** Group I

A. Cyanides

The cyanides of sodium, potassium, rubidium and caesium are dimorphic: the high temperature forms of NaCN²⁵, KCN²⁶ and RbCN²⁷ crystallise in a 6:6 sodium chloride structure, while the high temperature form of $CsCN²⁷$ crystallises with an $8:8$ caesium chloride arrangement. The behaviour of the cyanide ion as an apparently spherical entity can be rationalised by assuming either disorder or rotation of the CN⁻ groups. An X -ray study²⁸ of NaCN was unable to

distinguish between these possibilities, but in a later neutron study²⁹ on KCN, the data were consistent only with rotating cyanide groups.

In a further neutron study³⁰ of cubic KCN at 180° K, free rotation of the cyanide groups was ruled out: no preferred orientation of the cyanide groups could be established and the authors suggest that they undergo rapid interchanges between a number of equivalent orientations separated by only a low activation barrier. A sophisticated analysis of the cyanide group motion in NaCN, studied by neutron diffraction, has appeared 31 .

At low temperatures, rotation of the cyanide groups ceases and the symmetry of the crystals is reduced. $NaCN²⁵$ and $KCN²⁶$ adopt an orthorhombic modification of the sodium chloride structure in which all the cyanide groups are parallel, while $CsCN²⁷$ forms a rhombohedral modification of the caesium chloride structure with the cyanide group lying along the threefold axis.

Only a single crystalline modification of LiCN is known: this forms an orthorhombic structure³² in which each lithium ion is coordinated by the nitrogens of three cyanide ions and the carbon of a fourth, at the vertices of a somewhat distorted tetrahedron. No rotation of cyanide ions occurs. The C-N distances observed are, in LiCN³², 1.15 Å, in NaCN²⁵, 1.05 Å, and in KCN²⁹, $1.16(1)$ Å: these are closely comparable with that found in hydrogen cyanide³, $1.155(1)$ Å. The change in coordination from 4:4 in LiCN via 6:6 in NaCN, KCN and RbCN to 8:8 in CsCN is noteworthy.

The only structurally characterised hydrated cyanide of Group I is sodium cyanide dihydrate³³, NaCN 2H₂O. In this the cyanide ions have $r(C-N)$ of 1.07 Å, appear to be ordered and are hydrogen bonded to water molecules with $N \cdot \cdot \cdot$ (H)O of 2.81 Å: NaCN \cdot 2H₂O is essentially isostructural with NaBr \cdot 2H₂O³⁴.

B. Cyanates and Azides

obably the most thoroughly studied of the Group I eudo-halides are the azides³⁵. Sodium azide crystallises in two modifications; β -NaN₃ has a rhombohedrally distorted NaCl structure³⁶, in which the linear

and symmetrical azide groups lie along the three-fold axes with $r(N-N)$ 1.173(12)Å, while α -NaN₃ although monoclinic is very closely similar to the β form: in α -NaN₃ the N-N distance³⁶ is 1.167(13)Å. Lithium azide is monoclinic and isostructural with α -NaN₃³⁶, with $r(N-N)$ of 1.162(14)Å. In lithium and sodium azides the azide groups are all parallel, but evidence was found for extensive libration of the azide ions yielding corrections to the N-N distance of 0.007\AA in LiN₃ and α -NaN₃ and 0.005 Å in β -NaN₃.

The azides of potassium, rubidium and caesium are isostructura13' crystallising in a tetragonal modification of the 8:8 CsCl structure, with linear azide groups lying along the edges of the CsCl type cell, related by the four fold rotation axis. The central nitrogen atoms of eight azide groups are disposed about each metal ion at the vertices of a tetragonally compressed cube: the closest neighbours of each metal ion are the terminal nitrogen atoms of eight azide ions which approximately describe a square antiprism. The N-N distances e: in KN₃, $1.18(1)$ Å; in RbN₃, $1.17(11)$ Å; and in Csl $17(7)$ A^{37} .

Lithium azide monohydrate is markedly different in structure from the anhydrous material³⁸. It contains two types of lithium ion: those of type I are octahedrally coordinated by the terminal nitrogen atoms of six azide groups and each pair of adjacent lithiums is joined by two linear and symmetrical bidentate azide ions, so forming an infinite network. The lithium ions of the second type are octahedrally coordinated by six water molecules. In the azide groups, the N-N distance is $1.174(2)$ Å. This structure is remarkable, not least as it provides a rate example of a molecular species of a first row atom, *i.e.* $Li(OH₂)₆⁺$, with a coordination number which is greater than four.

The cyanates of the Group I elements, so far as they have been investigated, appear to be isostructural with the corresponding azides. Sodium cyanate is rhombohedral, isostructural with β -NaN₃³⁹; the NCO group is strictly linear with $r(C-O)$ of 1.13Å, and $r(C-N)$ of 1.2 1 A. Sodium fulminate, NaCNO, appears to be essentially isostructural⁴⁰.

TABLE II. Structural Relationships Between Some Pseudohalides of the Alkali Metals, Thallium and Ammonium.

Structure	Space Group	Compounds	Ref.
6:6 NaCl structure	Fm3m	NaCN (H.T.), KCN (H.T.), RbCN (H.T.)	25, 26, 27
Orthorhombic modification of NaCl	Imm2	NaCN $(L.T.)$, KCN $(L.T.)$	25, 26
Rhombohedral modification of NaCl	R3m	β -NaN ₃ , NaNCO, NaCNO	36, 39, 40
8:8 CsCl structure	Pm3m	CsCN (H.T.), TICN	27,88
Tetragonal modification of CsCl	P4/mcm	NH₄CN	151
Tetragonal modification of CsCl	I4/mcm	KNCO, RbNCO, CsNCO, TINCO	41
		KN_3 , Rb N_3 , Cs N_3 , Tl N_3	37
Rhombohedral modification of CsCl	R3m	$CsCN$ (L.T.)	27
Orthorhombic modification of CsCl	Pmna	NH_4N_3	152

The cyanates of potassium, rubidium and caesium are all tetragonal⁴¹, crystallising in space group I 4/mcm, and appear to be isostructural with the analogous azides.

C. Thiocyanates

The only Group I thiocyanate whose structure has been investigated is the potassium salt which crystallises with an orthorhombic structure markedly different from that of any other Group I pseudohalide^{40,42}. The NCS group is linear, with $r(N-C)$ 1.15Å and $r(C-S)$ 1.79Å. It should perhaps be emphasised that this is not a modern determination, and that although the general features of the structure are probably correct, undue weight should not be placed on the values of the geometrical parameters obtained: in particular the C-S distance derived is exceptionally long and may result from a slight misplacement of the carbon and/or sulphur atoms.

The structural relationships between a number of pseudo-halides of the Group I metals, and a few ammonium and thallium(I) pseudo-halides, are summarised in Table 11.

4. **Pseudohalides of Group II**

A. Group IIA

Like those of Group I, the pseudohalides of Group IIA appear to be largely ionic in character: only the azides and the cyanamides have been subject of detailed structural investigations.

(i) Azides

Strontium azide is orthorhombic⁴³ and contains linear azide ions having $r(N-N)$ of 1.163(24) \AA ; the azide ions undergo extensive thermal motion and the authors estimated a librational correction of $+0.007\text{\AA}$. Each strontium ion is surrounded by eight azide ions whose central nitrogen atoms describe an approximate square antiprism, as do also the eight nearest neighbours (terminal nitrogens). Calcium azide crystallises in the same space group and with closely similar cell dimensions, and seems to be virtually identical in structure with the strontium salt⁴⁴.

Barium azide crystallises with a quite different monoclinic structure⁴⁵: the nearest neighbours of each barium ion are the terminal nitrogen atoms of nine different azide ions, which adopt a tri-capped trigonal prismatic arrangement. The unit cell contains two crystallographically distinct azide ions and in one $r(N_a-N_b)$ is 1.168(2)Å, and $r(N_b-N_c)$ is 1.164(2)Å; in the other $r(N_a-N_b)$ is 1.178(2)Å and $r(N_b-N_c)$ is 1.157(2)Å; neither differs significantly from linearity. As with a number of other ionic azides 37 , evidence was found for appreciable rigid-bar type torsional motion of the azide ions, but in this example no librational corrections were estimated.

A number of hydrated azides of the Group IIA metals exist, but their crystallographic study has not progressed^{44,46,47} beyond the determination of cell dimensions and, in some cases, of a tentative space group. In view of the remarkable structural changes which accompany the hydration of lithium azide $36,38$, further structural investigation of these hydrates would surely be worthwhile.

(ii) Cyanamides

In both CaCN₂ and SrCN₂, discrete linear NCN⁻² ions can be discerned. Calcium cyanamide crystallises in a rhombohedrally distorted form of the CsCl structure⁴⁸, and so is closely related structurally to β -NaN₃: the NCN⁻² ion is strictly linear and symmetrical, having $r(C-N)$ of 1.224(16)Å. Although the structure can be related to the 8:8 CsCl arrangement, the extent of the rhombohedral distortion is such that each calcium ion is closely coordinated by only six nitrogen atoms, belonging to six different cyanamide ions, in a trigonal antiprismatic arrangement. The coordination of the cyanamide ions by calcium is, of course, similar.

In strontium cyanamide⁴⁹, there are two sets of cyanamide ions, populated in the ratio 3 : 1. The members of the smaller set must either be freely rotating about carbon in parallel planes or be disordered within these planes: the electron density of the two nitrogen atoms of this set of anions is distributed uniformly throughout a toroidal region around the carbon atoms. The C-N distance derived for the ordered or stationary set of cyanamide ions is $1.28(7)$ Å; this does not differ significantly from the value found⁴⁸ for the calcium salt.

B. Group IIB

By contrast with the elements of Group IIA, zinc, cadmium and mercury exhibit a great variety of structural types amongst their pseudohalides, both in binary compounds and in complexes.

(i) Cyanides

The binary cyanides of zinc and cadmium crystallise in the anti-cuprite structure: while it is probable that the M-C-N-M fragments are linear, the carbon and nitrogen atoms were not placed accurately $50,51$. Mercury(II) cyanide, on the other hand, has been the subject⁵² of an accurate 3-dimensional neutron study. The structure consists of essentially linear molecules, but each mercury atom is bonded weakly to two nitrogen atoms in addition to the carbon atoms of two cyanide groups: the principal structural parameters for mercury(I1) cyanide are set out in Table III, along with those of a number of other cyano-mercury (II) species.

The cyanide species $K_2M(CN)_4$ (M = Zn, Cd, Hg) are all isostructural⁵³: while discrete tetrahedral $M(CN)₄⁻²$ ions can readily be recognised, the struc-

^aTwo types of Hg: see text. ^bC,N not distinguished. ^cOrientation of CN assumed by authors. ^dValues assumed by authors. "Two CN environments within $Zn(OH₂)₄(NCHgCN)₂$ molecules: first row of values refers to $(CN)₁$, second to $(CN)_{II}$; see text.

ture nevertheless bears a startling resemblance to the AB_2O_4 spinel structure, with CN^- ions in the oxygen sites, $\text{Zn}^{\dot{+}2}$, $\text{Cd}^{\dot{+}2}$ or $\text{Hg}^{\dot{+}2}$ ions in the tetrahedral A site and K^+ ions in the octahedral B site. The zinc complex has more recently been studied by neutron diffraction and the authors considered⁵⁴ four possible models for the cyanide geometry: they were able to reject models involving (i) rotating cyanide ions, (ii) disordered cyanide ions, and (iii) cyanide ions whose coordination is $Zn-N-C-K-C-N-Zn$, i.e. bonded to zinc via nitrogen. The best fit to the neutron diffraction data was obtained for a structure involving the cyanide bonded to zinc *via* the carbon atoms, thus K-N-C-Zn-C-N-K: the C-N bond distance, corrected for thermal motion, was found to be $1.157(9)$ Å.

All the other cyanide species of Group IIB which have been investigated structurally are mercury derivatives, whose principal geometrical parameters are set out in Table III.

Methylmercury(I1) cyanide has been investigated both by X-ray and by neutron diffraction⁵⁵. The overall accuracy of the structure derived from the neutron data is higher, but none of the differences between the neutron and the X-ray structures is significant. The methyl group was found to be rotating about the H3C-Hg bond: no significant intermolecular interactions were observed. The neutron diffraction studies of $Hg(CN)_2^{52}$, CH₃HgCN⁵⁵ and K₂Zn(CN)₄⁵⁴ are important as they demonstrate quite unambiguously that the cyanide ligand coordinates to metals (at least in Group IIB) *via* carbon rather than *via* nitrogen.

The stoichiometrically similar compounds $Hg(CN)_{2}$. KI and $Hg(CN)_2 \cdot HgO$ are in fact entirely different structurally. The structure of $Hg(CN)_2 \cdot KI$ consists⁵⁶ of essentially linear $Hg(CN)_2$ molecules lying approximately normal to sheets of iodide, ions such that the mercury is coordinated by two cyanide ions at 2.OSA and four more distant iodide ions at 3.38\AA . The four coordinating iodide ions describe a square giving the

mercury tetragonally compressed octahedral geometry. $Hg(CN)_2$ HgO, by contrast, consists of bis(cyanomercury(II))oxide, $O(HgCN)_2$, molecules⁵⁷: the molecules are planar and contain two distinct types of mercury atom. The first type, Hg_I , exhibits an O-H g_I -C angle of 158° (no errors were quoted by the author for interbond angles) and is bonded intermolecularly to two oxygen atoms at 2.53Å, with an $O \cdots Hg_1 \cdots O$ angle of 101° , giving the mercury atom Hg_I deformed tetrahedral geometry. The second type, Hg_{II}, has an O-Hg_{II}-C angle of approximately 180° , and takes part in intermolecular bonds with four nitrogen atoms, two at 2.84\AA and 2.96\AA , so taking on approximately octahedral geometry. The molecules are linked by the $Hg_1 \cdots$ O interactions into columns, which are themselves linked together by the $Hg_{II} \cdots N$ bonds.

Cyanomercury(II) nitrate, NCHgNO₃, which is formally similar to bis(cyanomercury(II))oxide, exhibits yet another kind of structure⁵⁸. The mercury atoms and the cyanide groups are formed into infinite, strictly linear cationic chains: -Hg-(C-N)-Hg-(C-N) -Hg-, with nitrate groups placed between the chains in a disordered arrangement. Within the chains, the carbon and nitrogen atoms of the cyanide groups were not distinguished: their separation was $1.128(13)$ Å and their average distance from the mercury atoms was 2.063(9)A.

In the double salt $Hg(CN)_2 \cdot AgNO_3 \cdot 2H_2O$, approximately linear chains -Hg-C-N-Ag-N-C-Hg-C-N $-Ag-$ are found⁵⁹. By fixing the C-N distance at 1.156\AA and assuming that the cyanide groups are ordered with the carbon end coordinated to the mer-, cury, the authors were able to derive mean parameters as follows: r(Hg-C) 2.04(8)Å; r(Ag-N) 2.11(6)Å;
 \langle (C-Hg-C) 177(4)°; \langle N-Ag-N) 163(2)°; \langle (C-Hg-C) 177(4)°; \langle (N-Ag-N) 163(2)°; $\langle (Hg - C - N) \quad 174(5)^\circ \quad \text{and} \quad \langle (Ag - N - C) \quad 173(6)^\circ \rangle$ Both the mercury and the silver make a number of fairly close contacts with oxygen atoms in their equatorial planes.

By contrast with the infinite chains observed in the double salt of mercury(I1) cyanide and silver nitrate, in the double salt with zinc nitrate, $2Hg(CN)_2 \cdot Zn$ $(NO₃)₂·7H₂O$, molecular species $Zn(OH₂)₄(Hg)$ $(CN)_2$ ₂⁺² are discernible⁶⁰ in which mercury(II) cyanide molecules act as ligands, coordinating onto zinc via the nitrogen of one cyanide group thus:

$$
N\hbox{-} C\hbox{-} H_9-C\hbox{-} N\hbox{-} \underbrace{-}_{} \stackrel{\text{O} H_2}{\underbrace{-}_{} N\hbox{-} C\hbox{-} H_9\hbox{-} C\hbox{-} N}_{H_2O} \underbrace{-}_{} \underbrace{N\hbox{-} C\hbox{-} H_9\hbox{-} C\hbox{-} N}_{I\hbox{\scriptsize I\hbox{\scriptsize I}}\hbox{\scriptsize I\hbox{\scriptsize I}}}
$$

so that there are two distinct HgCN groupings HgC_1N_1 and $HgC_{II}N_{II}$ within the molecule. The geometrical parameters derived for the two distinct HgCN fragments do not differ significantly. The $Zn-N_1$ distance found was 2.13(2)Å with a (Zn-N₁-C₁) angle of 173.5(2.6)^o: the overall Zn-Hg distance is 5.3OA. In the cadmium analogue $Hg(CN)$ ₂. Cd(NO₃)₂. xH₂O, the Cd–Hg distance is 5.41 Å , suggesting the presence of Hg-C-N-Cd chains⁶⁰: however no evidence was found for the occurrence of carbon and nitrogen atoms along the Cd-Hg axis. The author has suggested that the structure may consist of independent $Hg(CN)_2$ molecules and cadmium ions surrounded by a disordered array of oxygen atoms.

(ii) Thiocyanates

No thiocyanate derivatives of zinc appear to have been characterised structurally. Two cadmium thiocyanates have been examined. In $K_2Cd(SCN)_4.2H_2O$, the cadmium atoms are octahedrally coordinated by four sulphur atoms at a distance of 2.66\AA , and by two nitrogen atoms at 2.45\AA , there being two distinct types of NCS group in the asymmetric unit⁶¹: the dimensions of the thiocyanate groups are poorly determined, as the carbon and nitrogen atoms are placed with only limited accuracy. Octahedral cadmium atoms coordinated by $4S + 2N$ are found⁶² also in Cd(NCS)₂(etu)₂, where etu denotes ethylenethiourea. The cadmiums are surrounded by two sulphur atoms from etu, two sulphur atoms from NCS, and two nitrogen atoms from NCS, the octahedra being thereby linked into infinite chains. In the NCS groups the dimensions found are: N-C, $1.19(10)$ Å; C-S, $1.55(5)$ Å; < (S-C-N), $165(9)$ °; and \leq (Cd–S–C), 109.1(44)°.

A substantial number of mercury(II) thiocyanate species have been structurally investigated: the principal geometrical parameters derived from the more accurate structure determinations are collected in Table IV. In mercury thiocyanate $Hg(SCN)_2$ the mercury exhibits approximately octahedral coordination, being surrounded by two sulphur atoms at 2.381 A and four nitrogen atoms at 2.81\AA^{63} . Distorted octahedral mercury is. found⁶⁴ also in *cis*-Hg(SCN)₂(o -phen)₂ in which the mercury-sulphur distances are 2.58 and 2.62Å. Molecular mercury(II) thiocyanate occurs⁶⁵ also in $M^1Hg(SCN)_3$ ($M^1 = K^+$ or NH_4^+), which consist of M^+ and SCN⁻ ions and Hg(SCN)₂ molecules; the mercury is four coordinate, with two sulphur atoms at 2.47Å (K^+ salt) and 2.52Å (NH_4^+ salt) within the $Hg(SCN)_2$ molecule, and two further at 3.29Å belonging to SCN⁻ ions: for both the K^+ and NH_4^+ salts the carbon and nitrogen atoms of the thiocyanate are placed only with limited accuracy.

The thiocyanate groups act as bidentate bridging ligands in $CoHg(SCN)₄$ ⁶⁶, so that mercury is coordinated by four sulphur atoms and cobalt by four nitrogen atoms: in each case the metal coordination polyhedron is a rather distorted tetrahedron. Isostructural are $ZnHg(SCN)₄^{67}$, $CdHg(SCN)₄^{67}$, and $CoHg(SeCN)₄^{68}$. The copper complex $CuHg(SCN)_4$ while stoichiometrically analogous to the foregoing, adopts a quite different structure in which the copper, instead of being tetrahedral, has tetragonally distorted octahedral coordination⁶⁹: the mercury atom is still tetrahedrally coordinated by four sulphur atoms and the copper is coordinated by two axial sulphur atoms at a distance of 3.00& and by four equatorial nitrogen atoms at 1.94Å. The copper-ethylenediamine salt $Cu(en)_2Hg$ $(SCN)₄$ similarly contains⁷⁰ tetrahedral mercury, coordinated by four sulphur atoms, and tetragonal copper, now coordinated by four equatorial nitrogen atoms (from ethylenediamine) at 2.07\AA and two axial nitrogens (from SCN) at 2.58A and 2.81 A: the two other distances from copper to nitrogen of SCN are very

___ ~..____.

TABLE IV. Principal Geometrical Parameters for Isothiocyanates for Mercury(I1).

Compound	$r(Hg-S)A$ $r(S-C)A$			$r(C-N)\AA$ <(Hg-S-C)° <(S-C-N)° $r(Hg\cdots X)\AA$ $r(N\cdots Y)\AA$ Ref.				
$Hg(SCN)_2$	2.381(6)	1.62(2)	1.18(3)	97.6(0.5)	177.5(1.3)	$2.81(1)^{a}$		63
CoHg(SCN) ₄	2.558(4)	1.635(14)	1.20(2)	97.4(0.5)	177.9(1.7)	$\overline{}$	$1.921(16)^{b}$	66
CuHg(SCN) ₄ ^c	2.63 2.53	1.66 1.82	1.20 1.21	92.4 98.4	160.3 169.1		1.94 ^d	69
Cuen ₂ Hg(SCN) ₄ 2.55		1.57	1.34	102.1	163.2		2.58° 2.81	70

 $A^4Hg'' \cdot N$ distances of 2.81(1) \AA . $A^4N \cdot N$. Co distances of 1.921(16) \AA . Two types of SCN group. $4^4N \cdot N$. distances of 1.94 Å. $^{\circ}$ 2 N \cdots Cu distances of 2.58 and 2.81 Å.

Compound	$r(M-N_s)$ Å	$r(N_a-N_b)$ Å	$r(N_b-N_c)$ Å	$\langle (M-N_a-N_b) \rangle$	$\langle (N_a-N_b-N_c)^\circ \rangle$	Coordina- tion Number of Metal	Ref.
$Zn(N_3)_2(NH_3)_2$	1.988(10)	1.19(2)	1.16(2)	128(2)	176(2)	4	72
$Zn(N_3)_2 (py)_2^a$	1.937(10)	1.161(18)	1.132(10)	128.9(1.0)	175.0(1.5)	4	73
$Cd(N_3)_2 (py)_2^a$	2.344(16)	1.167(20)	1.141(21)	135(1)	179.1(1.7)	6	74
α -Hg(N ₃) ₂	2.09(2)	1.19(3)	1.16(3)	115(2)	174(2)		75

TABLE V. Geometrical Parameters for Azides of Group IIB.

a py = pyridine.

cant in the coordination of the copper. In the two seven; the coordination polyhedron about mercury is a copper compounds the overall structure is dominated monocapped trigonal prism with the directly-bonded by the steric requirements of the tetragonal copper(I1) N-Hg-N fragment lying in the diagonal of the capped ion. The contract of the contr

Both ClHgSCN and BrHgSCN consists of molecules containing linear two coordinate mercury⁷¹: the Hg-S distances are 2.31A and 2.38A respectively. These distances are very close to that observed⁶³ in $Hg(SCN)_2$ in which the mercury coordination was $2S + 4N$. It may be significant that Hg-S distances in those species containing four-coordinate mercury lie in the fairly narrow range $2.53-2.63\text{\AA}$. It is unfortunate that no Hg-N distances were quoted for cis -Hg(SCN)₂(o -phen)₂; in view of the observed 64 Hg-S distances (2.58 and 2.62 Å) more precise specification of the mercury coordination polyhedron would be welcome.

(iii) Azides

The binary azides of zinc and cadmium are structurally uncharacterised: some complexes of these azides with amines have been investigated and the principai geometrical parameters for these are collected in Table V. Both the bis-ammonia and bis-pyridine adducts of zinc azide, $Zn(N_3)_2(NH_3)_2^{72}$ and $Zn(N_3)_2$ $(py)_2^{\frac{73}{}}$ exist as monomeric molecules containing fourcoordinate zinc. The geometrical differences between the $Zn-N_3$ fragments in these two molecules are insignificant: the $Zn-N$ (amine) distances are $2.017(10)$ Å and $2.031(10)$ Å. By contrast, $Cd(N_3)_2(py)_2$ contains74 six coordinate cadmium: each cadmium atom is coordinated by two pyridines which occupy *trans* positions in an approximate octahedron, and by four azide groups which serve to link the $CdN₆$ octahedra into a three-dimensional framework. The mean Cd-N (azide) distance is 2.344A and the mean Cd-N(pyridine) distance is 2.349A.

In α -Hg(N₃)₂ discrete molecules can be discerned⁷⁵ containing approximately linearly coordinated mercury: the N-Hg-N angle is $175(1)^\circ$, and the mean Hg- N_a-N_b angle is 115(2)°, with a dihedral angle of 43° between the two azide groups. The Hg-N distance has a mean value of 2.09(2) and there are five other nitrogen-mercury distances in the range 2.67-3.16A.

long, 3.60Å and 4.06Å, and are too long to be signifi-
The effective coordination number of the mercury is

(iv) Other pseudohalides

The only other pseudohalogen derivatives of the Group IIB metals which have been investigated are the tetra-fulminatometallate anions, $M(CNO)_{4}^{-2}$: no X-ray study has been performed but the vibrational spectra of these ions are fully in accord with T_d symmetry⁷⁶ implying linear $M-C-N-O$ chains.

5. **Pseudohalides of Group III**

There appears to be no structural information on the pseudohalides of scandium, yttrium, lanthanum or gallium. Only relatively few studies have been made of the pseudohalides of boron, aluminium, indium and thallium. Perhaps more than in any other group, the compounds of Group III are almost wholly covalent among the lighter elements of the group and almost wholly ionic among the heavier: in view of this, all the pseudohalides of boron and aluminium will be discussed together, followed by those of indium and thallium.

A. Boron and Aluminium

Three isothiocyanate derivatives, all of boron, have been studied, and the geometrical data for the pseudohalide fragments are collected in Table VI. In ammoniasothiocyanatoborane⁷⁷, NH₃BH₂NCS the B-N bond distance, 1.534(S)A is closely comparable with that found in ammonia-triborane-7, $NH₃B₃H₇$, (1.581) (3) Å)⁷⁸, whereas in tetra-B-isothiocyanatotetra-N-tbutylborazocine, $(Me_3CNBNCS)₄$ ⁷⁹ and 6-isothiocy natodecaborane-14, 6- $B_{10}H_{13}NCS^{80}$, the B-N distance are $1.431(11)$ Å and $1.435(6)$ Å respectively: the shorter distances have been taken to indicate π -interaction between the nitrogen atom of the isothiocyanate group and the boron to which it is attached $79,80$. However, the B-N-C angle seems to be independent of any $p_n \rightarrow p_n$ interaction involving the isothiocyanate

Compound	$r(B-N)$ Å	$r(N-C)$ Å	$r(C-S)$ Å	\langle (B-N-C) ^o	$\langle (N-C-S)^\circ \rangle$	$r(B \cdots C)$ A	Ref.
$NH3 \cdot BH2 NCS$	1.534(8)	1.137(8)	1.627(6)	177.5(0.6)	179.2(0.5)	2.670	
(Me ₃ CNBNCS) ₄	1.431(11)	1.172(10)	1.560(8)	176.4(0.8)	177.3(0.7)	2.602	79
$6-B_{10}H_{13}NCS$	1.435(6)	1.149(5)	1.581(4)	171.0(0.6)	178.1(0.6)	2.576	80

TABLE VI. Selected Geometrical Parameters for Boron Isothiocyanates.

group, and is close to 180° in each compound. If it is assumed that the lowest of the B-N-C angles, 171° in 6-B₁₀H₁₃NCS, is limited by the non-bonded $B \cdots C$ interaction, then adoption of Bartell' s^{81} non-bonded radius for carbon, 1.2SA, yields a non-bonded radius of 1.33A for boron: this is entirely reasonable in view of the values for C, 1.25\AA ; N, 1.14\AA ; O, 1.13\AA ; F, 1.08 Å. That the B \cdots C distances do not determine the B-N-C angle in the other two *isothiocyanatoboranes* may be a consequence of the effect of crystal forces on this angle: it is known⁸² that such forces can cause substantial perturbations to those inter-bond angles whose deformation force constants are low, such as $M-N=C$ or $M-O-M'$.

In ammonia-isothiocyanatoborane the N-C distance is much shorter, 1.137\AA and the C-S distance is much longer, 1.627\AA , than the corresponding distances in isothiocyanic acid¹¹, 1.216Å and 1.560Å respectively. This was ascribed by the authors⁷⁷ to an important contribution to the structure from the form

$$
B-\overline{N} \equiv C-S
$$

However the N-C bond is distinctly short, 1.149A in $6 - B_{10}H_{13}NCS^{80}$, although the lengthening of the C-S bond is far less marked than in $NH₃ \cdot BH₂ NCS$, so that such a rationalisation seems not to be wholly satisfactory.

For each of boron and aluminium, a single molecular azide derivative has been structurally characterised. The structure of $(BCl_2N_3)_3$ consists⁸³ of B₃N₃ rings made up of BCl₂ groups and one terminal nitrogen atoms of each azide group. The boron atoms are approximately tetrahedral, while the ring nitrogen atoms are planar: the mean N_a-N_b and N_b-N_c distances are $1.260(10)$ Å and $1.088(10)$ Å respectively, and the $N_a-N_b-N_c$ angle is 178.5(1.1)^o. In the (Me_3AlN_3) AlMe₃)⁻ anion, studied⁸⁴ as its potassium salt, the azide group is again bonded to two other atoms, here aluminium, through the same terminal nitrogen, The Al_2N_3 fragment is planar with N_a-N_b and N_b-N_c distances of $1.21(2)$ Å and $1.13(2)$ Å respectively and an angle $N_a-N_b-N_c$ of 178(1)^o. In the boron compound, the B-N-B angle is $127.5(0.6)^\circ$, while the corresponding angle in the aluminium species is $127(1)$ °: an angle close to 120" might have been expected in each of these compounds, and it seems that the opening of the angle to $ca. 127^\circ$ is more probably steric than electronic in origin. Although in $(BCl_2N_3)_3$, the N_a-N_b

is significantly longer than that in hydrazoic $acid^{18}$ $(1.260(10)\text{\AA}$ vs. $1.237(2)\text{\AA})$ and the N_h-N_c significantly shorter $(1.088(10)$ Å vs. $1.133(2)$ Å), a difference which might be attributed to contributions from

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} x_j \otimes N
$$

this is not reflected in the azide group dimensions of the $(AI_2Me_6N_3)^-$ ion, which differ insignificantly from those in HN₃. The compounds $M^T(Al₂Me₆X)$ have also been prepared⁸⁵ for $X = NCS$ and NCSe: vibrational spectra indicate structures similar to that of the azide analogue with the pseudohalide bonded to aluminium through sulphur or selenium.

B. Indium and Thallium

The only pseudohalogen derivatives of indium which have been structurally investigated are the tricyanide, $In(CN)_{3}$, and the trithiocyanate, $In(SCN)_{3}^{86}$. The tricyanide appears⁸⁶ from powder photography to be isostructural with indium trichloride⁸⁷: this implies an ionic structure consisting of essentially close-packed (freely-rotating?) cyanide groups with the indium atoms in octahedral interstices. The trithiocyanate appears from powder photography to be cubic and the authors suggest a structure containing bridging SCN groups in which the angle In-S-C is about 109° and $C-N \cdot \cdot \cdot$ In about 180 $^{\circ}$. Complete structure determinations would be welcome for both these pseudohalides.

The thallium pseudohalides which have been characterised structurally are all derivatives of thallium(I), TIX, and are all isostructural with the corresponding pseudohalides of the larger alkali metals (see Table II). Thallium cyanide crystallises in the cubic 8:8 CsCl structure⁸⁸, presumably with freely rotating cyanide groups. Thallium azide crystallises in the same tetragonally distorted form of the CsCI structure as the azides of potassium, rubidium and caesium 3^7 : the azide group is linear and symmetrical with an N-N distance of $1.16(24)$ Å. The large standard deviation on this distance is probably a reflection of the difficulty of placing accurately light nitrogen atoms in the presence of the very heavy thallium atom if using X-ray data alone.

Thallium cyanate is similarly isostructural with the cyanates of potassium, rubidium and caesium 41 , which are themselves isostructural with the corresponding azides. Thallium thiocyanate is isostructural with the potassium salt^{42,89}.

6. **Pseudohalides of Group IV**

Very many compounds with a pseudohalogen bonded to carbon have been structurally characterised⁹⁰: in general the structural interest has attached principally to the rest of the carbon framework, and consequently only a few of the simpler examples will be discussed here.

A. Cyanides and Fulminates

The principal geometrical parameters of the cyanides of the Group IV elements are set out in Table VII, together with those of fulminates. It may be noted that substitution of hydrogen by halogen in $CH₃CN$ does not lead to the expected shortening of the C-C and $C-N$ distances^{19,91,92}. Methyl substitution giving $Me₃CCN$ leaves the C-N distance essentially unchanged but causes an increase in the $\equiv C-C \equiv$ distance from 1.458Å to 1.495 \AA^{93} , an increase which is exactly paralleled in the corresponding acetylenes. Methyl cyanide forms 1:1 adducts with boron trihalides: in the boron trifluoride adduct, the nitrogen-boron distance is 1.635A, with all the skeletal atoms in a straight line 94 . The C-C distance is unchanged, but the C-N distance is decreased to 1.124 Å , presumably because the unshared electron pair on nitrogen is somewhat antibonding in character: the adducts with boron trichloride and boron tribromide appear⁹⁵ to be isostructural.

Silyl cyanide has been studied in the vapour both by electron diffraction⁹⁶ and by microwave spectro $scopy^{97}$: the structures obtained are identical. In the solid state silyl cyanide appears⁹⁸ to form continuous chains with a short Si-C distance and a long $Si \cdot \cdot \cdot N$ distance.

It is noteworthy that in both the silyl and germyl derivatives, the M-C distance $(M = Si \text{ or } Ge)$ is significantly greater in the cyanides^{96, 97, 99} than in the isoelectronic acetylenes^{100, 101, 102}, whereas in the corresponding methyls, the C-C distances are identical $19,103$.

Trimethylgermyl cyanide forms long chains in the solid state¹⁰⁴. The Ge-C and C-N distances are normal, being $1.98(6)$ Å and $1.15(13)$ Å respectively: there is a long distance intermolecular interaction, $N \rightarrow$ Ge, of 3.57 Å which is reflected in the CH₃-Ge-CH₃ angle of $114.8(1.4)^\circ$. Infinite chains are also found in trimethyltin cyanide¹⁰⁵ but now the $SnMe₃$ groups are planar, the cyanide groups are end-over-end disordered, and each atom of the cyanide group is 2.49(2)A distant from the next tin atom in the chain, indicating a much stronger $N \rightarrow Sn$ interaction. Both trimethylgermyl cyanide in chloroform solution¹⁰⁶ and trimethylsilyl cyanide in the vapour phase¹⁰⁷ appear to consist of equilibrium mixtures of the normal C-bonded cyanide and the N-bonded isocyanide: no isocyanide of a group IV element other than carbon has been isolated. Both triethyltin cyanide and trimethyllead cyanide appear to be isostructural with trimethyltin cyanide, but only the heavy atoms could be located in these structures¹⁰⁸: if it is assumed that the C-N distance is the same in all three compounds, the mean value of the $M-C$ and $M-N$ distances is for $Et₃SnCN$

Compound	r(M-C) A^a	$r(C-N)$ Å	$r(N \cdots M)$ Å ^b			Phase ^c	Method ^d	Ref.
CH ₃ CN	1.458(1)	1.157(1)				V	$\mathbf R$	19
CF ₃ CN	1.461	1.153				V	\mathbb{R}	91
CCl ₃ CN	1.460	1.158^{e}				V	$\mathbf R$	92
CMe ₃ CN	1.495(15)	1.159(1)				V	\mathbb{R}	93
CH ₃ CNBF ₃	1.458	1.124		$r(N-B)$	1.635\AA	S	X	94
SiH ₃ CN	1.848(2)	1.158(2)				v	E	96
	1.847(5)	1.158(2)				V	\mathbb{R}	97
GeH_3CN	1.919(1)	1.155(1)				v	\mathbb{R}	99
Me ₃ GeV	1.98(6)	1.15(13)	3.57			S	X	104
Me ₃ SnCN	$2.49(2)^f$	1.09(2)	$2.49(2)^{f}$			S	X	105
Me ₂ Si(CN) ₂	1.86(3)	1.14(2)	3.48(3) 3.97(2)			S	X	109
Me ₂ Ge(CN) ₂	1.96(2)	1.12(2)	3.28(2) 3.84(2)			S	X	109
Me ₂ Sn(CN) ₂	2.27(7)	1.09(12)	2.68(11)			S	X	109
MeCNO	1.4414(4)	1.1671(6)		$r(N-O)$	$1.2189(4)$ Å	V	$\mathbf R$	112
Me ₃ CCNO	1.458(10)	1.169^e		$r(N-O)$	1.217\AA^e	V	\mathbb{R}	113

TABLE VII. Geometrical Parameters for Cyanides and Fulminates of Group IV

^aM = C, Si, Ge or Sn. ^bIntermolecular distance in solid. ^cV = Vapour, S = Solid. ^dE = Electron diffraction;

 $R =$ Microwave spectroscopy; $X = X$ -ray diffraction. Value assumed by authors. Cyanide groups disordered.

2.44A, and for Me,PbCN 2.59A, comparable with the 2.49 Å observed for $Me₃SnCN¹⁰⁵$.

In the structures of $Me₂Si(CN)₂$ and $Me₂Ge(CN)₂$, discrete molecules can be recognised¹⁰⁹. In each, one cyanide nitrogen makes a short contact with a neighbouring molecule, so forming infinite chains: the other $N \cdot \cdot \cdot M$ distance is greater than the van der Waals contact distance, so that these structures are rather similar to that of $Me₃GeV¹⁰⁴$. The observed $CH₃-M-CH₃$ angles are for $M = Si$, 120.2(1.0)°, and for $M = Ge$, $120.9(0.8)$ °. By contrast, in Me₂Sn(CN)₂ the two $N \cdot \cdot$ Sn interactions are now equivalent¹⁰⁹: the Sn-C distance is $2.27(7)$ Å, while the Sn \cdots N distance is 2.68(11)Å, and the CH₃-Sn-CH₃ angle is now 148.7 (2.5) °, so that this structure approaches the ionic situation containing $(CH_3)_2$ Sn⁺² groups and detached cyanide ions. The limiting condition of such a structure would have linear $(CH_3)_2\text{Sn}^{+2}$ ions (isoelectronic and isostructural with $(CH_3)_2T1^{+110}$ and $(CH_3)_2Hg^{111}$, with octahedral coordination of the tin completed by four cyanide groups. It may be noted that the $NC-M-CN$ angle in Me₂Sn(CN)₂ is 85.3(3.7)^o; in Me₂Ge(CN)₂, $100.9(0.7)$ °; and in Me₂Si(CN)₂, 101.1(1.0)°. Me₂Pb $(CN)_2$ appears¹⁰⁹ to be isostructural with the tin analogue.

Of the Group IV elements, only carbon forms isollable, molecular N-bonded isocyanides. In the simplest of these, methyl isocyanide¹⁹, the C-N distance is 1.424Å and the N=C distance 1.166Å: the C-N=C angle is 180° , conferring C_{3v} symmetry on the molecule as a whole.

Two fulminates of carbon have been studied by microwave spectroscopy: both are symmetric tops. In methyl fulminate. CH,CNO, the three skeletal bonded distances were determined explicitly¹¹² as C-C, 1.4414(6)Å, C-N 1.1671(6)Å and N-O 1.2189(4)Å. The C-C distance is slightly shorter than that observed in the parent compound $CH₃CN¹⁹$, while the C-N distance is slightly larger: in view of the small uncertainties in these two determinations, the differences between corresponding distances are significant. It is of interest that the change in the C-N distance induced by N-oxidation is in the opposite sense to that induced 94 by N-coordination to boron trifluoride.

In t-butyl fulminate, $(CH₃)₃CCNO$, not all the independent geometrical parameters could be found explicitly '13: by making plausible assumptions about the structure of the $(CH_3)_3C$ -group and setting $r(C-N)$ at 1.169 Å and $r(N-O)$ at 1.217 Å, the $\equiv C-C \equiv$ distance was found to be $1.458(10)$ Å. The ratio $r(N-Q)/r$ (C-N) in this structure is 1.041, from the assumed values: this may be compared with observed values of 1.040 in fulminic acid⁴ and 1.044 in methyl fulminate¹¹². The frequency of skeletal deformation δ (C-C-N) in $(CH_3)_3$ CCNO was deduced as 86 ± 20 cm⁻¹.

Several salts of cyanoform, containing the $C(CN)_{3}^{-}$ anion, have been structurally investigated. These are of

interest in that in the sodium¹¹⁴, copper $(II)^{115}$ and ammonium 116 salts, the central carbon atom of the anion is not pyramidal as expected but essentially planar. The ammonium salt crystallises in a monoclinic modification of the CsCl structure: the anion exhibits C_{3v} symmetry with linear C-C-N fragments and a mean C-C-C angle of $119.6(1.0)^\circ$. The deviation from planarity implied by this is felt by the authors to be real¹¹⁶. The sodium salt by contrast has 6 -fold coordination of the cation rather than g-fold as found in the ammonium salt. The mean C-C-C angle is 120° . and the mean C-C-N angle 179.0°: the authors feel¹¹⁴ that any deviations from planarity in this case are due to crystal packing effects. The copper salt¹¹⁵ also contains a strictly planar anion. The most accurate bond distances were obtained for the sodium salt 114 : corrected for libration, the mean C-C distance is $1.408(2)$ Å and the mean $C-N$ 1.153(3)Å.

$B. Isocyanates and Isothiocyanates$

The principal geometrical parameters of the simpler isocyanates and isothiocyanates of Group IV are set out in Table VIII. It will be noted that in general the N-C and C-O distances in the isocyanates are close to those in $HNCO^{10}$, 1.207Å and 1.171Å respectively, while the N-C and C-S distances in the isothiocyanates are close to those in $H NCS^{11}$, 1.216Å and 1.560Å. In particular, in an isocyanate the $N-C$ distance is greater than the C-O distance.

Methyl isocyanate has been studied both by microwave spectroscopy¹¹⁷ and by electron diffraction¹¹⁸: the microwave structure cannot be regarded as a uniquely accurate structure, only as a "best-fit" to the observed spectrum whose interpretation is complicated by extensive interaction between the molecular vibrations and both the overall and the internal rotations of the molecule. In the electron diffraction study of $CH₃NCO¹¹⁸$, it was found that the peaks in the radial distribution curve assigned to the $N=C$ and $C=O$ distances overlap, so that these distances are strongly correlated: it seems probable that the alternative assignment, with $r(N-C)$ 1.202Å and $r(C-O)$ 1.168Å is more appropriate. Such a reversal will not affect the $C-N=C$ angle which is determined largely by the non bonded $C(methyl) \cdot \cdot \cdot O$ distance; this is unchanged by the reversal of the $N-C$ and $C-O$ distances.

Methyl isothiocyanate likewise has been studied by both electron diffraction¹¹⁸ and microwave methods¹¹⁷: as with $CH₃NCS$, the microwave structure is only a "best-fit", for similar reasons. Subject to this limitation on the accuracy of the microwave study, the two structures are in reasonable agreement.

Two silyl isocyanates. SiH3NC0 and Me,SiNCO, and one isothiocyanate SiH?NCS, have been investigated by both microwave spectroscopy and electron diffraction. That apparently different structures result from the two techniques is readily understood in terms

Compound	$r(M-N)$ Å ^a	$r(N-C)$ Å	$r(C-Z)$ Å ^b	$r(M \cdots C)$ Å	\langle (M-N-C) ^o	Method ^c	Ref.
CH ₃ NCO	1.450(4)	1.168(5)	1.202(5)	2.464(8)	140.3(0.4)	Е	118
	1.437	1.207	1.171	2.486	140(1)	$\mathbf R$	117
SiH ₃ NCO	1.703(4)	1.216(9)	1.164(8)	2.833(6)	151.7(1.2)	Е	121
	1.699	1.150	1.179		180	$\mathbb R$	119
	1.76(2)	1.20(1)	1.18(1)	2.86	150(3)	E	124
Me ₃ SiNCO	1.690	1.16 ^d	1.179 ^d		180	R	123
SiF ₃ NCO	1.648(10)	1.190 ^d	1.168(25)	2.799(12)	160.7(1.2)	E	125
SiCl₃NCO	1.646(8)	1.219(7)	1.139(8)	2.679	138.0(0.4)	E	127
SiCl ₂ (NCO) ₂	1.687(4)	1.217(5)	1.146(5)	2.698	136.0(1.0)	Е	127
$SiCl(NCO)$ ₃	1.684(5)	1.213(5)	1.144(5)	2.767	145.0(2.0)	Е	127
Si(NCO) ₄	1.688(3)	1.209(2)	1.165(2)	2.777	146.4	E	128
GeH ₃ NCO	1.831(4)	1.190(7)	1.182(7)	2.858	141.3(0.4)	E	130
	1.479(8)	1.192(6)	1.597(5)	2.525(16)	141.6(0.4)	Е	118
CH ₃ NCS	1.452	1.216	1.561	2.562	147.5(1.0)	R	117
	1.704(6)	1.197(7)	1.563(6)	2.873(6)	163.8(2.6)	Е	121
SiH ₃ NCS	1.714(10)	1.211(10)	1.560^{d}		180	$\mathbf R$	120
Me ₃ SiNCS	1.78(2)	1.18(1)	1.56(1)	2.89	154(2)	E	124
$Si(NCS)_{4}$	1.673(10)	1.198(12)	1.510(13)	2.865	172.5(0.8)	X	129
$Me3$ SnNCS	2.15(6)	1.15(7)	$1.64(7)^e$	3.29	173(5)	X	132
$Me2Sn(NCS)$ ₂	2.139(13)	1.174(14)	$1.571(3)^f$	3.28	163.5(1.7)	X	133

TABLE VIII. Geometrical Parameters of Group IV lsocyanates and Isothiocyanates.

^aM = C, Si, Ge or Sn. ${}^{b}Z$ = O or S. ${}^{c}E$ = Gas phase electron diffraction; R = Microwave spectroscopy; X = X-ray diffraction. ^d Value assumed by authors. ^e Intermolecular S. Sn distance 3.13(2)A. ^f Intermolecular S. Sn distance $3.21(1)$ Å.

of the experiments. Structure determination by microwave spectroscopy depends on the observation and assignment of rotational transitions within a given vibrational state, and the experimentally derived moments of inertia apply to that particular vibrational state. Electron diffraction, on the other hand, measures interatomic distances directly, averaged over all the thermally populated vibrational states. If a molecule such as $SiH₃NCO$ has a low frequency skeletal bending vibration, $\delta(Si-N-C)$, then several excited states of this mode will be populated at the temperature of the experiment: these have probability maxima displaced from the linear configuration, so that the structure observed, averaged over all the bent excited states as well as the linear ground state, appears to be bent. The microwave structures in Table VIII all refer to vibrational ground states.

The most extensively studied of the isocyanates and isothiocyanates are $SiH₃NCO$ and $SiH₃NCS$, which were shown by microwave spectroscopy^{119, 120} to have linear ground vibrational states. The electron diffraction data for these two compounds have been used to determine potential functions for the skeletal bending mode $\delta(Si-N-C)^{121}$: for the isocyanate the best function found was a mixed harmonic-quartic function with an energy minimum at an $Si-N-C$ angle of 159 $^{\circ}$ (observed 152°), while for the isothiocyanate, the best function found was purely harmonic, with the energy minimum at an $Si-N-C$ angle of 180 $^{\circ}$. The skeletal bending frequencies deduced from these potentials

were 20 cm^{-1} for silylisocyanate and 100 cm^{-1} for silylisothiocyanate, which may be compared (Table IX) with frequencies derived from the l-doubling constants, 30 cm^{-1} and 54 cm^{-1} 119,120 and from shrinkage calculations, 69 cm^{-1} and 113 cm^{-1} 122.

Trimethylsilyl isocyanate has been shown to be linear at nitrogen in its ground vibrational state¹²³: in view of the similarity between its electron diffraction structure and that of trimethylsilyl isothiocyanate¹²⁴, it seems likely that this latter compound also has a linear ground state.

The skeletal bending frequency $\delta(Si-N-C)$ in $Me₃SiNCO$ was deduced¹²³ as 64 ± 15 cm⁻¹, compa rable with the estimates for SiH_3NCO .^{119, 120, 122}

No distinction could be made, from electron diffraction data, between a purely harmonic potential and a harmonic-quartic function¹²⁵ for SiF₃NCO: the best harmonic potential yielded a skeletal frequency of 97 cm⁻¹: it seems probable that SiF_3NCO , SiCl_3 $NCO^{125,126,127}$ and $SiCl₃ NCS¹²⁶$ all have linear ground states. Although no estimates of skeletal bending frequencies are available for $SiCl₂(NCO)₂^{127}$, SiCl $(NCO)₃$ ¹²⁷ and Si $(NCO)₄$ ¹²⁸, there seems to be no reason for ruling out linear Si-N-C-O fragments in the vibrational ground states of these molecules. An X-ray study¹²⁹ of crystalline Si(NCS)₄ has revealed an Si-N-C angle of 172.5° : this is quite possibly a perturbation from the minimum energy linear configuration, arising from intermolecular forces.

Although germyl isocyanate might plausibly be

Compound	Vibration	Frequency $(cm-1)$	Method	Ref.
		20	Potential function ^a	121
SiH_3NCO	δ (Si-N-C)	30	l-doubling	119
		69	Shrinkage	122
		100	Potential function ^b	121
SiH ₃ NCS	$\delta(Si-N-C)$	54	l-doubling	120
		113	Shrinkage	122
Me ₃ SiNCO	$\delta(Si-N-C)$	64 ± 15	Vibrational satellites	123
			in microwave spectrum	
SiF ₃ NCO	δ (Si-N-C)	97	Potential function ^b	125
SiCLNCO	$\delta(Si-N-C)$	29	Combination bands in	126
			infrared spectrum	
SiCLNCS	$\delta(Si-N-C)$	24	Combination bands in	126
			infrared spectrum	
Me ₃ CCNO	δ (C-C-N)	86 ± 20	Vibrational satellites	113
			in microwave spectrum	

TABLE IX. Skeletal Bending Frequencies in Isocyanates, Isothiocyanates and Fulminates.

^a Harmonic-quartic function, ^b Harmonic function.

thought from its electron diffraction structure 130 to have a linear Ge-N-C-O skeleton in its ground state, its microwave spectrum indicates that this is not so^{131} : for an assumed value of 1.81\AA for the Ge-N distance, the Ge-N-C angle was deduced from the rotational constants to be 143". Germyl isothiocyanate appears from its vibrational spectra to have a non-linear $Ge-N-C-S$ skeleton²²¹

Both $Me₃SnNCS¹³²$ and $Me₂Sn(NCS)₂^{133}$ are associated in the solid state, with weak intermolecular interactions between sulphur and tin. In the trimethyl tin compound, the Me₃Sn group is planar within experimental error, and the $S \cdots Sn-N-C-S$ group is approximately linear, giving the tin trigonal bipyramidal coordination. The Sn-N distance, 2.15A, is not unusually long (cf. Sn. $\cdot \cdot$ N distance of 2.68Å in Me₂Sn $(CN)_2^{109}$, while the Sn. S distance, 3.13Å is closely comparable with the short non-bonded $Sn \cdot \cdot \cdot S$ distance, 3.16A, in dimethyldithiocarbamatotrimethylstannane, $Me₃SnSCSNMe₂^{134, 135}, but appreciably longer than its$ bonded Sn-S distance, 2.47\AA . In Me₂Sn(NCS)₂ the tin atoms are six-coordinate¹³³: the $Sn-N$ distances are 2.139Å and the $Sn \cdot \cdot \cdot S$, 3.20Å, so that as with Me,SnNCS, distinct and discrete molecules can be recognised in the structure. The tin coordination is somewhat distorted from the regular octahedron which would obtain for a completely ionic structure, having a $CH_3-Sn-CH_3$ angle of $148.9(0.9)^\circ$ and an N-Sn-N angle of $86.6(0.5)$ °: these are virtually identical with the corresponding angles in $Me₂Sn(CN)₂^{109}$, CH₃-Sn-CH₃, 148.7° and NC-Sn-CN, 85.3° , strongly suggesting that the character of the bonds involving tin is essentially identical in the two compounds.

The structure of $(Me_2SnNCS)_2O$ consists of dimeric molecules¹³⁶:

The whole structure has 2/m symmetry: the endocyclic tin atoms (those in $Sn₂O₂$ ring) have trigonal bipyramidal coordination. Weak inter-dimer bonds between sulphur and the exocyclic tin atoms give these tins very distorted octahedral coordination. The "bonded" Sn-N distances are Sn(endocyclic)-N 2.39(8) and Sn(exocyclic)-N 2.06(4) \AA : the "non-bonded" $Sn \cdot \cdot \cdot N$ distance is $2.84(4)$ Å. The dimensions of the two crystallographically distinct N-C-S fragments are the same within experimental error: (endocyclic values first) N-C, $1.17(7)$ and $1.10(7)$; C-S, $1.61(6)$ and $1.64(5)$; N-C-S, $177.2(4.0)°$ and $179.9(8.0)°$. The exocyclic Sn-N-C angle is $169.4(3.0)$ °; in an isolated dimer molecule this angle, and the corresponding angles in isolated $Me₃SnNCS$ and $Me₂Sn(NCS)₂$ molecules would probably all be 180".

Although no simple isocyanate of tin has been structurally investigated, the structure has been determined of Me_3SnNCO Me_3SnOH^{137} : this consists of infinite OSnNSnOSnNSn chains, the N being that of the isocyanate group, and the 0 that of hydroxide. The two distinct Me,Sn groups in the structure are both planar within experimental error. The two Sn-N distances are

2.43(5) \AA and 2.75(5) \AA , but the two Sn-O distances are $2.14(5)$ Å and $2.15(5)$ Å. This may indicate that the structure should be regarded as made up of $Me₃$ SnOH. Me,SnNCO molecules, so that the Sn-N distance of 2.43A is "intramolecular", while that of 2.75A is "intermolecular".

 $Pb(NCS)_{2}$ (etu)_z (etu = ethylenethiourea) is isostructural¹³⁸ with the cadmium analogue⁶².

Of the Group IV elements only carbon forms monomeric S-bonded normal thiocyanates: these are discussed with the other pseudohalides of sulphur.

C. *Azides*

Methyl azide has been investigated by both electron diffraction¹⁰⁸ and microwave spectroscopy¹³⁹: while the microwave structure is only a best fit to the observed spectrum, the close correspondence between the two structures indicates that the skeleton is bent and fairly rigid.

In silyl azide, the Si-N_a-N_b angle is $123.8(1.0)^{\circ 140}$ as found by electron diffraction. This is much smaller than the angles at N found by electron diffraction 121 for the analogous $SiH₃NCO$, 151.7° , and $SiH₃NCS$ 163.8°: that silyl azide is bent at N_a in its vibrational ground state is suggested both by its vibrational spectra¹⁴¹ and its unanalysed microwave spectrum¹⁴². Germyl azide has been investigated only by electron diffraction¹³⁰: in view of the several results for silyl azide there seems no reason to suppose that germyl azide differs appreciably in its geometry from methyl azide. The principal structural parameters of methyl, silyl and germyl azides are summarised in Table X. The N_a-N_b distance is always significantly longer than the N_b-N_c distance, as found also for HN_3^{18} .

The structures of a number of organic azides have been described: possibly the most interest attaches to the structure of $C(N_3)_3$ ⁺ SbCl₆⁻¹⁴³. This salt contains approximately planar propeller-like cations in which the three azide groups, although crystallographically different, do not differ significantly in their dimensions: the values quoted in Table X are mean values. The mean $N_a-N_b-N_c$ angle is 163.2°: as with other molecular pseudohalides in the solid state, the deviation from linearity observed here is most probably a reflection of the effect of intermolecular forces acting to deform an interbond angle, for which deformation the restoring force constant is very low (it has been calculated¹²¹ that to alter the Si-N-C angle in SiH₃NCO from 180° to 140° requires the expenditure of no more than 1 kcal/mol).

The only tin azide to have been studied is $Me₃SnN₃$. $Me₃$ SnOH, which appears to be isostructural¹³⁷ with Me₃SnNCO · Me₃SnOH.

The α phase of lead(II) azide forms a complex structure, which has been the subject of a very careful threedimensional neutron study 144 . Four distinct azide environments can be discerned in the structure: in three of these, the two terminal nitrogens of the azide group are each coordinated to two lead atoms, while in the fourth, one terminal nitrogen is coordinated to three lead atoms and the other to only one. In each of the $2 + 2$ coordinate azides the two N-N distances are fairly similar, ranging from $1.160(8)$ Å to $1.193(8)$ Å with an average of 1.171 Å. In the $3+1$ azide group the N-N distance involving four-coordinate nitrogen is $1.213(10)$ Å, while that involving two-coordinate nitrogen is $1.147(13)$ Å. The overall structure is built of layers of symmetric $(2+2)$ azide groups, lead atoms, and asymmetric $(3+1)$ azide groups. Each lead atom is coordinated by eight nitrogens at the vertices of a distorted square antiprism: a similar arrangement is found in the azides of potassium, rubidium, caesium and thallium²⁷, and of strontium⁴³.

D. Carbodiimides and Cyanamides

Two organic carbodiimides have been investigated by X-ray methods. In bis-p-tolyl carbodiimide, $(p CH_3C_6H_4N_2C$, the dihedral angle between CNC planes is 88° ¹⁴⁵, so that the structure is unambiguously allene-like: in bis-p-nitrophenyl carbodiimide, $(p -$

TABLE X. Geometrical Parameters of Some Group IV Azides and Carbodiimides.

Compound	$r(M-N_a)$ Å ^a	$r(N_a-Y)$ Å ^b	$r(Y-Z)$ Å ^c	$r(M \cdots Y)$ Å	$\langle (M-N_a-Y) \rangle$	Method ^d	Ref.
	1.468(5)	1.216(4)	1.130(5)	2.290(6)	116.8(0.3)	Е	118
CH ₃ N ₃	1.46	1.24	1.13	2.30	117	R	139
$C(N_3)_3^{+e}$	1.336(11)	1.390(11)	1.051(10)	2.361	120(1)	X	143
SiH ₃ N ₃	1.719(8)	1.304(11)	1.125(8)	2.674(10)	123.8(1.0)	E	140
GeH_3N_3	1.845(6)	1.250(9)	1.140(7)	2.684	119(2)	E	130
$(p\text{-CH}_3C_6H_4N)_2C$	1.430(4)	1.214(5)	-	2.37 ₆	127.8(0.3)	x	145
$(p \text{-}NO_2C_6H_4N)_2C$	1.399(8)	1.211(9)		2.38 ₆	132.0(0.6)	X	146
$(SiH_3N)_2C$	1.696(4)	1.206(5)		2.809(4)	150.6(1.2)	E	140
$(GeH_3N)_2C$	1.813(5)	1.184(8)		2.807	138(1)	E	130
$(Me_3Sn)_2CN_2$ ^t	2.47(1)	1.24(2)	$\overline{}$	3.24	117.6(0.4)	X	147

 $^{\text{a}}\mathbf{M} = \mathbf{C}$, Si, Ge or Sn. $^{\text{b}}\mathbf{Y} = \mathbf{N}_{\text{b}}$ or C. $^{\text{c}}\mathbf{Z} = \mathbf{N}_{\text{c}}$. $^{\text{d}}\mathbf{E} = \mathbf{G}$ as phase electron diffraction; R = Microwave spectroscopy; $X = X$ -ray diffraction. e^{i} As SbCl₆⁻ salt. ^fInfinite structure, see text.

 $NO₂CAH₂N₂C$, the dihedral angle is 113.5°, but the authors felt^{146} that the deviation from the 90 $^{\circ}$ expected for an allene-like structure was due principally to intermolecular forces.

Disilyl carbodiimide is found, by electron diffraction¹⁴⁰, to have an Si-N-C angle of 150.6° , and a dihedral angle of 102": by analogy with silyl isocyanate and silyl isothiocyanate, it seems probable that the ground vibrational state of disilyl carbodiimide has a linear SiNCNSi group, and that the structure observed reflects the low frequency high amplitude skeletal deformations. Digermyl carbodiimide has a Ge-N-C angle, 138° almost identical¹³⁰ with that in germyl isocyanate, 141.3": the authors felt that in this example, an allene-like structure was the best description.

No discrete molecules can be recognised in crystalline $(Me_3Sn)_2CN_2^{147}$. The structure consists of an infinite helical network of planar Me₃Sn groups and linear, symmetrical NCN groups. Each tin has trigonal bipyramidal geometry, with equatorial methyl groups and axial nitrogen atoms: the N-Sn-N angle is $173(2)^\circ$ and the deviation from linearity is ascribed by the authors to intermolecular forces. The nitrogen atoms are all identical and have planar trigonal coordination by $C + 2Sn$. The Sn₂NCNSn₂ fragments have D_2 symmetry with a dihedral angle, between the $Sn₂N$ planes, of 68° . The Sn-N distance 2.47(1)Å, is similar to the 2.49Å observed¹⁰⁵ in the ionic Me₃SnCN, where the CN groups are disordered. The authors¹⁴⁷ consider the structure of (Me_3Sn) , CN₂ to be intermediate between carbodiimide, cyanamide and ionic structures.

Somewhat analogous, at least in stoichiometry, to $(Me_3Sn)_2CN_2$ are the dicyanamides $Me_3SnC_2N_3$ and $Me₂Sn(C₂N₃)₂¹⁴⁸$. Dicyanamides are often written in the form $RN(CN)_2$, but in these two tin derivatives, no coordination of the central nitrogen of the ligands to tin occurs. In each compound the NCNCN groups are planar: the SnNC and NCN angles are close to 180 $^{\circ}$, but the CNC angle is 129.6(1.1) $^{\circ}$ in the trimethyl tin compound, and $124.2(0.8)^\circ$ in the dimethyl tin species.

 $Me₃SnC₂N₃$ consists of infinite chains of strictly planar Me₃Sn groups and NCNCN groups, so that the tin atoms have trigonal bipyramidal coordination. $Me₂Sn(C₂N₃)₂$ consists of two dimensional sheets of approximately octahedral tin atoms joined by planar NCNCN groups, with the $SmMe₂$ groups normal to the sheets.

The central C-N distances are $1.263(15)$ Å and $1.289(10)$ Å in the trimethyl and dimethyl compounds respectively, the outer C-N distances $1.116(14)$ Å and 1.132(9) \AA , and the Sn-N distances are 2.335(9) \AA $22(2)1$, and $\frac{1}{2}$

is a major contributor to the structures of these dicyanamides.

PbCNz is quite definitely a cyanamide derivative'49. The structure comment a spiral PbNPbN chain with The structure consists of a spiral PbNPbN chain with evano groups attached to the intra-chain nitrogen atoms. The C-N(chain) distance is 1.25(6)A, while the C-N(terminal) distance is $1.17(8)$ Å, not significantly shorter. The intra-chain nitrogen forms two bonds to lead with a mean Pb-N distance of $2.42(5)$ Å; both nitrogens make long $Pb \cdots N$ contacts between spirals.

E. Thionylimides

The only structurally characterised thionylimide of Group IV is the methyl derivative, $CH₃NSO¹⁵⁰$. By adopting the N-S and S-O distances and the N-S-O angle from $HNSO²³$, a cis-planar structure consistent with the microwave spectrum was derived, having a C-N distance of 1.47\AA and a C-N-S angle of 122\degree .

7. **Pseudohalides of Group V**

By comparison with Group IV, rather few pseudohalides of Group V have been structurally investigated, or indeed chemically characterised. While the ammonium pseudohalides might plausibly be included with those of Group I, they are discussed here, followed by molecular pseudohalides.

$A.$ Ammonium Pseudohalides

Ammonium cyanide crystallises¹⁵¹ in a tetragonal (P4/mcm) modification of the 8:8 CsCl structure $(cf.$ Table II): the cyanide groups are in fixed orientations, but the carbon and nitrogen atoms are disordered. The C-N distance is 1.09A.

Ammonium azide exists as an orthorhombic (Pmna) modification of the CsCl structure¹⁵² (cf. Table II): the N-N distances are reported as 1.16A and 1.17A. but this difference is probably insignificant.

Ammonium thiocyanate crystallises in a mcnoclinic structure peculiar to itself¹⁵³, containing linear $SCN^$ ions with the S-C distance 1.59\AA and the C-N distance 1.25 Å. Ammonium silver thiocyanate, $NH_4Ag(SCN)_2$, consists¹⁵⁴ of ammonium ions, thiocyanate ions and AgSCN molecules: in the SCN^- ions, the distances are S-C, 1.707\AA and C-N 1.095\AA . NH₄Hg(SCN)₃ simi- \mathcal{L} , \mathcal{L} and \mathcal{L} is \mathcal{L} in \mathcal{L} is \mathcal{L} in \mathcal{L} in \mathcal{L} is \mathcal{L} in \mathcal{L} in \mathcal{L} in \mathcal{L} is \mathcal{L} in \mathcal{L} in \mathcal{L} in \mathcal{L} is \mathcal{L} in \mathcal{L} in $\mathcal{L$ $\frac{1}{2}$ molecules: $\frac{1}{2}$ the SCN- ion the distances are S.C. molecules: in the SCN⁻ ion the distances are S-C, 1.65 Å and C-N' 1.09 Å.

B. Cyunides

Geometrical parameters for the Group V cyanides of the form X_2 MCN are collected in Table XI. Of the compounds studied in the vapour phase, only PF,CN has been investigated by both electron diffraction¹⁵⁵ and microwave spectroscopy¹⁵⁶. The differences be-

Compound	$r(M-C)$ Å ^a	$r(C-N)$ Å	$\leq (M-C-N)^{\circ}$	$\langle (X-M-X)^{\circ b} \rangle$	$r(N \cdots M)$ Å ^c	Method ^d Ref.	
NH ₂ CN	1.346(5)	1.160(5)	180 ^e	113.5(0.1)		R	158
NF ₂ CN	1.386(9)	1.158(4)	173.9(2.2)	102.8(0.5)	-	R	157
	1.792(9)	1.165(5)	180 ^e	97.9(0.3)	$\qquad \qquad \blacksquare$	Е	155
PF_2CN	1.815(5)	1.157(3)	171.2(0.8)	99.2(0.2)	$\overline{}$	\mathbb{R}	156
P(CN)	1.788(20)	1.149(30)	171.6(3.0)	93.5(2.0)	2.85	X	159
Me ₂ AsCN	2.01(4)	1.16(7)	180(4)	105(2)	3.18	X	160
MeAs(CN) ₂	1.98(3)	1.12(4)	175(2)	$93.7(2.0)^f$	2.94	X	161
$As(CN)$ ₃	1.93(4)	1.11(5)	175(3)	90.5(2.0)	2.74	X	161, 162

TABLE XI. Geometrical Parameters for Group V Cyanides X_2MCN .

 ${}^{\text{a}}\mathbf{M} = \mathbf{N}$, P or As. ${}^{\text{b}}\mathbf{X} = \mathbf{H}$, F, CN or Me. ${}^{\text{c}}$ Shortest intermolecular r(N···M) in solid. ${}^{\text{d}}\mathbf{E} =$ Electron diffraction;

 $R =$ Microwave spectroscopy; $X = X$ -ray diffraction. ^e Value assumed by authors. ^f Mean C-As-C angle.

tween these two structures for PF_2CN are just signifi-
there is a backbone AsCNAsCN with two methyl cant, in particular the differences in $r(P-C)$. This is groups per arsenic, in MeAs(CN)₂ the same backbone probably a reflection of the assumption in the electron has one methyl and one cyanide side group per arsenic, diffraction study that the PCN fragment is linear, while and $As(CN)_3$ has two cyanide side groups. With init appears from the microwave study to be bent, with creasing cyanide substitution, the $N \cdot \cdot$ As distance bethe CN group tilted away from the fluorines. Since comes steadily smaller: 3.18\AA in Me₂AsCN, 2.94 \AA in the P. N and C-N distances are well determined in MeAs(CN)₂ and 2.74 Å in As(CN)₃. This may reflect the electron diffraction experiment, being well separat- an increase, with cyanide substitution, in the effective ed peaks in the radial distribution curve, this assump- nuclear charge of arsenic. Were analogous derivatives tion of linearity for PCN causes the PC distance, which of antimony and bismuth to be investigated it seems is overlapped by P-F, to be too short. This in turn probable that these would mirror the trend found in will increase the refined value of the vibrational am-
the heavier Group IV cyanides, where the cyanide plitude of the P-C distance; the authors note¹⁵⁵ that groups become progressively more ionic on descending this amplitude is larger than expected. the group.

In NF_2CN^{157} , the NCN fragment is bent, with the CN tilted away from the fluorines: NCN was assumed to be linear in a study of $NH₂CN¹⁵⁸$. That the N-C (single) bond is longer in $NF₂CN$ by some 0.040\AA than that in $NH₂CN$ is surprising: substitution of hydrogen by halogen normally causes a slight shortening of nearby bonds. It seems unlikely that neglect of any NCN bending in $NH₂CN$ could cause a large apparent change in the N-C distance, and it must be concluded that this difference is real.

Phosphorus tricyanide, $P(CN)$ ₃ consists of pyramidal molecules¹⁵⁹, each of whose CN groups engages in $N \cdot \cdot \cdot$ P interactions with neighbouring molecules. Within the molecule the PCN fragment is bent: this may be real or it may be a packing effect. The shortest intermolecular $N \cdot \cdot \cdot P$ distance is 2.85 Å: the other two are 2.96A and 2.97A.

The three cyanoarsines of Table XI have essentially similar structures in the crystal. $Me₂ AsCN$ consists of pyramidal molecules arranged into infinite, approximately linear, chains in which the molecules are joined by $N \cdots As$ interactions¹⁶⁰. The structure is very similar to that of $Me₃GeV¹⁰⁴$: the cyanide groups are ordered as also are the methyl groups. No rotation of the $Me₂As$ groups about the As-C bond occurs. In both $McAs(CN)_2^{161}$ and $As(CN)_3^{161,162}$, only one cyanide group engages in a close interaction with a neighbouring arsenic atom. Whereas in $Me₂ AsCN$,

A Group V cyanide not of the general type X_2MCN is nitrosyl cyanide ONCN. If it is assumed that the molecule is planar the following structure can be deduced¹⁶³ from the microwave spectrum: $r(O-N)$, 1.228(5) \hat{A} ; r(N-C)(central), 1.401(5) \hat{A} ; r(C-N) (terminal), $1.170(5)$ Å; <(O-N-C), $114.7(1.0)$ °; and $\langle (N-C-N), 172.5(3.0)$ ° such that the CN group is tilted away from the NO group. This tilt is in the ame sense as the tilts in NF_2CN^{15} and PF_2CN^{156} .

C. Isocyanates, Isothiocyanates and Carbodiimides

As well as PF_2CN , several other PF_2 pseudohalides have been investigated by electron diffraction: the results of these studies are summarised in Table XII. Both $PF₂NCO$ and $PF₂NCS$ appear¹⁶⁴ from the electron diffraction experiments to be bent at nitrogen with $<(P-N-C)$ 130.6° in PF₂NCO and 140.5° in PF₂NCS. The low frequency skeletal bend δ (P-N-C) was identified, from combination bands in the vibrational spectra, at 105 cm^{-1} in the isocyanate and 85 cm^{-1} in the isothiocyanate. Shrinkage corrections to the PNC angle calculated from the vibrational data led to corrected values for this angle of approximately 135" for $PF₂NCO$ and approximately 144 \degree for $PF₂NCS$. Unlike their SiH₃ analogues¹²¹ therefore, these pseudohalides appear to be little different from the meth $y1^{117,118}$ or, indeed, the hydrogen^{10, 11} species.

Compound	$r(P-N)$ Å	$r(N-C)$ Å	$r(C-X)$ \AA ^a	$\langle (P-N-C)^\circ \rangle$	$r(P \cdots C)$ Å	δ (P-N-C)cm ⁻¹	Ref.
PF ₂ NCO	1.683(6)	1.256(6)	1.168(5)	130.6(0.8)	2.67	105	162
PF ₂ NCS	1.686(7)	1.221(6)	1.553	140.5(0.7)	2.74		162
$(PF_2N)_2C$.680(6)	1.240(5)	$\overline{}$	132.8(0.5)	2.68		163

TABLE XII. Geometrical Parameters of N-bonded Pseudohalides of the PF₂ Group.

 ${}^{\rm a}$ X = O or S. ${}^{\rm b}$ Not reported.

In $(PF_2N)_2C$, the PNC angle, as determined in the electron diffraction experiment¹⁶⁵, is $132.8(0.5)$ °. By analogy with $PF₂NCO$ and $PF₂NCS$, the author suggests that the shrinkage-corrected angle is about 138", although no assignment of $\delta(P-N-C)$ can be made from the vibrational spectra. The dihedral angle between PNC planes is $55 \pm 15^{\circ}$, indicating that the compound ought to be regarded as an allene-like carbodiimide.

The only other Group V isothiocyanate whose structure is known is phosphonitrilic isothiocyanate, N_3P_3 $(NCS)_6^{166}$. This consists of planar hexagonal N_3P_3 rings, with two N-bonded NCS groups on each phosphorus, with a mean $N_{\rm exo}$ -P-N_{exo} angle of 100(1)°. The average P-N-C angle is $152(10)$ ^o, with individual values ranging from 135° to 165° , indicating how readily this angle can be deformed, at least between certain limits, by intermolecular forces within the crystal. The average N-C-S angle is $175(2)^\circ$, and its deviation from linearity may be real or it may be another consequence of intermolecular forces. The N_{exo}-P distance is $1.63(1)$ Å: this is much shorter than a 'single-bonded' N-P distance $(P-N \text{ in } H_3NPO_3$ ⁻ is $1.77(2)$ Å¹⁶⁷) and the authors suggest some π -interaction between the nitrogen of the thiocyanate and the d-orbitals of phosphorus. The $N-C$ and $C-S$ distances are unexceptional, being $1.12(4)$ Å and $1.59(4)$ Å respectively.

D. Azides

Only one structural study of a Group V azide has been reported. Antimony(V) azide tetrachloride is dimeric $[{\rm SbCl_4N_3}]_2^{168}$: the dimeric molecule is centrosymmetric and is based on a four membered Sb_2N_2 ring. The antimony atoms are octahedrally coordinated by four chlorines and the N_a atoms of two azide groups in *cis* positions. The $N_a - N_b$ and $N_b - N_c$ distances are $1.231(22)$ Å and $1.132(26)$ Å respectively, and the mean $N_a-N_b-N_c$ angle is 177.9(2.0)^o. The azide groups are not coplanar with the $Sb_2(N_a)$ ₂ ring, but are tilted out of this plane by some 25[°].

8. **Pseudohalides of Group VI**

All the structurally characterised pseudohalides of the Group VI elements can be regarded either as cyanides, or as normal thiocyanates or selenocyanates. The classification which has been adopted first conseders all those species containing only isolated Group VI atoms, then those containing aggregates of such atoms. While perhaps somewhat arbitrary, this seems the simplest and most obvious division.

The S-bonded normal thiocyanates of carbon are included in this group, considered as cyanides of sulphur. While again this may appear to be somewhat arbitrary, these compounds have far more in common structurally with the rest of the Group VI species than with the isothiocyanates of Group IV.

A. Pseudohalides Containing Isolated Group VI Atoms

The principal geometrical parameters for this class of pseudohalides are collected in Table XIII. It may be noted that all the sulphur species have a bond-angle at sulphur of around 99", those of selenium slightly smaller: this is fairly typical of 2-connected sulphur

Compound	$r(M-Z)$ Å ^a	$r(Z-C)$ Å	$r(C-N)$ Å	\langle (M-Z-C) ^o	$\langle Z - C - N \rangle$ °	Method ^b	Ref.
$S(CN)_2$	1.701(2)	1.701(2)	1.157(2)	98.4(0.2)	175.0(0.2)	R	169
	1.820 ^c	1.684	1.156 ^c	99.9	180°	R	170
MeSCN	1.818^{c}	1.689	1.157°	99.6	180 ^c	R	117
CH ₂ (SCN) ₂	1.808(6)	1.677(9)	1.194(12)	98.2(0.4)	176.4(1.0)	х	171
(CH ₂ SCN) ₂	1.80(1)	1.63(1)	1.18(2)	99.4(0.7)	172.3(1.3)	X	172
CF ₃ SeCN	1.984(20)	1.854(16)	1.152(20)	92.2(2.0)	180 ^c	E	173
p -NCSeC ₆ H ₄ SeCN	1.916(19)	1.837(23)	1.149(28)	94.4(0.9)	171.8(3.0)	X	174

TABLE XIII. Selected Geometrical Parameters for Pseudohalides of Group VI, Containing only Isolated Group VI Atoms.

 ${}^{\rm a}$ M = CN, CH₃, CH₂, CF₃ or C₆H₄; Z = S or Se. ${}^{\rm b}$ E = Electron Diffraction; R = Microwave Spectroscopy; $X = X$ -ray diffraction. ^c Value assumed by authors.

or selenium. Unlike the N-bonded isothiocyanates^{77,} 79,80,120,121,124,129,164,166 the normal thiocyanates exhibit no unusual bond angles.

Sulphur(II) cyanide, $S(CN)_2$, has C_{2v} symmetry: the SCN groups are bent, with the two CN fragments tilted away from one another 169 .

Two independent microwave studies have been made of methyl thiocyanate, MeSCN^{117, 170}. Neither has provided a complete structure determination: plausible assumed values for certain of the parameters have led to values for the remainder. The two studies give essentially identical structures.

In $CH₂(SCN)₂$, the SCN fragments are bent¹⁷¹, as in $S(CN)_2$, with the CN groups tilted away from one another. The molecule has C_2 symmetry, and pairs of neighbouring molecules in the crystal are linked together by pairs of weak $N \cdots S$ interactions. The SCN groups of neighbouring molecules overlap, giving an $N \cdot \cdot$ S distance of 3.17(1)Å. The ethane derivative $(CH₂SCN)₂$ crystallises with its molecules centrosymmetric, in the anti conformation¹⁷². The SCN groups are bent, but the authors did not feel that this was significant: it should be noted, however, that this is a fairly early determination (1958), reported before the occurrence of bent pseudohalide fragments in vapour phase molecules had been recognised^{156, 157, 163,} 169, 192, 193. Intermolecular interactions, at an $N \cdot \cdot \cdot S$ distance of 3.28\AA , again occur in pairs.

In an electron diffraction study of gaseous $CF₃SeCN$, the simplifying assumption was made¹⁷³ that the SeCN fragment is linear: if this assumption were relaxed, SeCN would almost certainly turn out to be slightly bent. In p -diselenocyanatobenzene, NCSeC₆H₄SeCN, the SeCN fragments are found to be bent¹⁷⁴. Each selenium atom makes close contacts with two nitrogen atoms, at distances of 3.06\AA and 3.32\AA ; each Se \cdots N interaction is approximately colinear with an Se-C bond, so that the selenium attains an approximately square planar coordination, as expected for a twelve valence-electron AX_4E_2 system¹⁷⁵.

B. Pseuhohalides Containing Arrays of Group VZ A tams

Of the species $X(YCN)_2$ where X, $Y = S$, Se, all but $S(SeCN)_2$ have been structurally characterised: their principal geometrical parameters are set out in Table XIV. The species with $Y = S$, $S(SCN)_2^{176}$ and $Se(SCN)₂$ ¹⁷⁷ both have approximately linear SCN groups: however, the latter is not a very recent structure, and the placing of the light atoms may not be of the highest accuracy.

The structure of $Se(SeCN)_2$ was originally refined by Fourier methods 178 : the authors felt that the placing of the carbon and nitrogen atoms was, in presence of three selenium atoms, somewhat uncertain. This structure was later refined¹⁷⁵ by least squares methods, using the original data, and it is the results of this refinement which appear in Table XIV. An attempt¹⁷⁴ to refine the structure of $Se(SCN)_2$ by least squares methods was unsuccessful because of inadequate data.

The triselenocyanate ion $(SeCN)_3$, analogous to the triiodide ion I_3^- , has been characterised in a number of salts. In each of these the anion has the same basic structure

$$
\begin{array}{c} Se-Se-Se\\ C\\ C\\ N\\ N\\ \end{array}\, \begin{array}{c} Se-Se\\ C\\ C\\ N\\ \end{array}
$$

which differs in detail from salt to salt (Table XV). In the potassium salt, the anion has no symmetry¹⁷⁹,

X	Y	$r(X-Y)$ Å			$r(Y-C)$ Å $r(C-N)$ Å $\langle (Y-X-Y)^{\circ} \langle (X-Y-C)^{\circ} \langle (Y-C-N)^{\circ} \rangle$			Dihedral Ref. angle (°)ª	
S		2.12	1.69	1.21	102	99	180	87	176
Se Se	S Se	2.21 2.301(8)	1.69 1.921(45)	1.13 1.005(54)	101 103.2(0.4)	104 94.3(1.4)	180 167(5)	79 94	177 174

TABLE XIV. Geometrical Parameters for the Compounds $X(YCN)_2$ (X, $Y = S, Se$).

^a Angle between YXY and XYC planes.

TABLE XV. Structures of the Triselenocyanate Ion in Various Salts.

Compound		$r(Se-Se)\AA$ $r(Se-C)\AA$ $r(C-N)\AA$		\langle (Se–Se–Se) \degree	\langle (Se–Se–C) $^{\circ}$	\leq (Se-C-N) $^{\circ}$	Tilt angle ^a	Ref.
$K(SeCN)3$ $^{1}/_{2}H_{2}O$ 2.669(4)		1.84(3)	1.12(4)	176.0(0.3)	91.6(0.6)	178.7(2.0)	57.4	179
$Rb(SeCN)3·1/2H2O$ 2.656(3) Cs(SeCN)	2.650(3)	1.81(3) 1.816(20)	1.17(3) 1.178(27)	176.9(0.3) 178.3(0.1)	92.0(0.5) 92.3(0.4)	178.7(2.1) 177.8(1.4)	65 43.9	180 181

"See text.

Compound ^a	$r(Te-Y)$ Å ^b	$r(Y-C)$ Å	$r(C-N)$ A	$r(Te-L)$ Å ^c	$\langle (Te-Y-C)^\circ \rangle$	$\langle (Y-C-N)^\circ \rangle$	Ref.
(etu) ₂ $Te(SCN)$ ₂	2.684(7)	1.673(21)	1.13(3)	2.651(6)	96.3(0.8)	178(2)	183
(etu) , $Te(SeCN)$,	2.809(3)	1.814(21)	1.14(3)	2.676(6)	95.9(0.9)	176(2)	183
$(trtu)2Te(SeCN)2$	2.834(2)	1.799(22)	1.152(31)	2.670(5)	100.9(0.6)	178.5(1.7)	184
$(tmtu)$ ₂ $Te(SeCN)$ ₂	2.815(3)	1.809(20)	1.163(27)	2.728(4)	99.8(0.7)	176.9(1.9)	184

TABLE XVI. Geometrical Parameters for Thiourea Complexes of Tellurium Pseudohalides. $\ddot{}$

 $^{\circ}$ etu = ethylenethiourea; trtu = trimethylenethiourea; tmtu = tetramethylthiourea. $^{\circ}Y = S$ or Se. $^{\circ}L = S$ ulphur atom of thiourea lipand.

in the rubidium salt it lies on a mirror plane through the central SeCN fragment¹⁸⁰, and in the caesium salt, it lies on a two fold $axis^{181}$. The tilt angle, the angle between planes defined by (a) a terminal SeCN fragment and the central Se atom and (b) the central SeCN fragment and a terminal Se atom, is the only parameter to vary significantly between the several salts: it is probable that the tilt angle is the most readily deformed of all the angles in the anion and that its actual value is largely dependent on intermolecular, rather than intramolecular forces.

Superficially similar to the alkali metal triselenocyanates, is potassium selenium triselenocyanate, which has been studied crystallographically as its hemihydrate, $KSe(SeCN)_3 \tbinom{1}{2}H_2O^{182}$. This should properly be written $K_2Sc_2(SeCN)_6 \cdot H_2O$, as the anion exists based on an approximately planar Se₈ unit:

The mean terminal Se–Se distance is $2.407(2)$ Å while the mean bridging Se-Se distance is $3.177(2)$ Å. The four-coordinate selenium atoms are approximately square planar (having twelve valence shell electrons). Each of the other six selenium atoms bears a CN group: these are all on the same side of the Sc_8 plane, with SeCN units approximately normal to this plane, although the Se-Se-C angles were not reported in detail.

By contrast with the derivatives of sulphur and selenium, neither the thiocyanate nor the aelenocyanatc of tellurium has been isolated in uncomplexed form. However these have both been prepared in the form of complexes with sulphur donors: $L_2Te(SCN)_2$ where L is ethylenethiourea (etu), and $L_2Te(SeCN)_2$, where L is etu, trimethylenethiourea (trtu) or tetramethylthiourea (tmtu). In each of these complexes the tellurium is square planar with the ligands in the tram arrangement. The principal geometrical parameters of these complexes are recorded in Table XVI. The $Se-C$ distance in the selenocyanates $183,184$ is appreciably shorter than the corresponding distance in CF_3SeCN^{173} : it might have been expected that the shorter distance would occur in the fluorine substituted compound.

9. **Pseudohalides of Group VII**

By far the most extensively studied of the Group VII pseudohalides are the cyanides: apart from these, only a few other derivatives, all of chlorine, have been investigated.

A. Cyanides

The cyanides of fluorine, chlorine, bromine and iodine have been investigated in the vapour phase by microwave spectroscopy³, and all save that of fluorine in the crystalline state by X-ray diffraction^{185.186,187}. The molecules are all linear and the interatomic distances are set out in Table XVII. It is noteworthy that in the highly accurate vapour phase structures. there is no change in the C-N distance on changing from the highly electronegative fluorine to the feebly electronegative iodine.

In the solid state, the molecules form linear chains, being held together by $N \cdot \cdot X$ interactions: the same trend is found on descending the group as was found in the Group TV and Group V cyanides, namely that the $N \cdot \cdot X$ distance becomes shorter (despite the increasing size of X) and the X-C and $N \cdot \cdot \cdot X$ distances approach one another, as the whole structure becomes progressively more ionic in character.

This propensity towards chain-formation is little affected by the interpolation of electron conducting groups between cyanide and the haiogen. For example cyanoiodoacetylene, I-C \equiv C-CN, forms linear chains¹⁸⁸ with an I-C distance of 1.79 Å, C-N of 1.20\AA , and $N \cdot \cdot \cdot$ 1 of 2.93 Å. p -Iodocyanobenzene, IC₆H₄CN, forms similar chains¹⁸⁹, in which the N. $\cdot \cdot$ I distance is 3.18Å.

B. Other Pseudohalides

An electron diffraction study of chlorine isocyanate was unable to distinguish between two possible planar $\frac{190}{P_0}$. Both had $\frac{1}{P_0}$ (CI-N) of 1.700(2) $\frac{8}{10}$. possibility had $r(G, N)$, 1.151(6)A; $r(G, O)$, 1.225 possibility had $r(N-C)$, $1.151(6)\text{\AA}$; $r(C-O)$, $1.225(6)\text{\AA}$; $\lt (C l-N-C)$, $123.1(0.5)^\circ$ and $\lt (N-C-O)$ 180°, while the other had $r(N-C)$, 1.227(5)Å; $r(C-O)$ 1.156(6)Å (the usual way round); <(Cl-N-C), 118.2 $(0.00)(0)$ is (the usual way found), $S(0.1)(0.1)$ $\mathcal{C}(t)$, and $\mathcal{C}(t) \subset \mathcal{C}(t)$, $\mathcal{C}(t)$, such that the change of $\mathcal{C}(t)$. CO fragment was bent away from the chlorine. Only the expected values of the N-C and C-O distances

Vapour Phase

allowed a choice to be made. That the structure was planar, but with NC0 weakly bent, was suggested also by a study of the vibrational spectra¹⁹¹.

A microwave study¹⁹² has provided a structure fully in accord with the second of the electron diffraction possibilities. The trans-planar structure has $r(CI-N)$, 1.703(11)& r(N-C) 1.218(12)A, r(C-0) l.l65(8)A; $<(C-I-N-C)$ 119.4(1.0)[°] and $<(N-C-O)$ 171.6 (1.5) ^o: none of these parameters differs significantly from those of the second electron diffraction model.

Chlorine azide similarly has a *trans* planar structure¹⁹³ with r(Cl-N_a), 1.745(5)Å; r(N_a-N_b), 1.252 (10) Å; $r(N_b-N_c)$, 1.133(10)Å; <(Cl-N_a-N_b), 108.7 $(0.5)^\circ$; and < $(N_a-N_b-N_c)$, 171.9 $(0.5)^\circ$. The $N_a-N_b-N_c$ angle is identical with the $N-C-O$ angle found¹⁹² in the isocyanate. The authors suggest¹⁹³ that the structure of chlorine azide may be understood in terms of the form

The analogous form for the isocyanate would be

Unlike $HNSO²³$ and $MeNSO¹⁵⁰$, ClNSO is nonplanar¹⁹⁴. The dihedral angle between the ClNS and NSO planes is $35.5(3.5)$ ": if it were zero, then the molecule would have the cis-planar structure found for HNSO and MeNSO. The other geometrical parameters are: $r(CI-N)$, 1.696(3)Å; $r(N-S)$, 1.559(4)Å; $r(S-O)$, 1.445(4)Å; \langle (Cl-N-S), 116.3(0.4)°; and \langle N-S-O), $116.0(0.6)^\circ$. These must, for the time being, be regarded as the standard dimensions for a thionylimide group, with which others may be compared. The example of the halogen cyanides³ suggests that the dimensions of the NSO group may be unaffected by changes in substituent, or at least by changes in substituent electronegativity.

10. Inter-Pseudohalogens

Just as the halogens form compounds amongst themselves, such as ICI, so also do the pseudohalogens, forming compounds such as $NCN₃$, cyanogen azide.

If sulphur(II) dicyanide, discussed earlier¹⁶⁹, is now regarded as cyanogen thiocyanate, then structures are known for four cyanogen pseudohalides: the cyanide $(\text{cyanogen})^{195,196,197}$, the isocyanate¹⁹⁸, the azide¹⁹⁹ and the thiocyanate.

Cyanogen itself has been studied both in the vapour phase, by rotational Raman spectroscopy¹⁹⁵ and by high resolution infrared spectroscopy¹⁹⁶, and in the solid state by X-ray diffraction¹⁹⁷. When the C-N distance was fixed at 1.157\AA , the distance found in a microwave study of cyanoacetylene²⁰⁰, the rotational data yielded¹⁹⁵ a C-C distance of 1.380Å. The infrared ectrum¹⁹⁶ yields r(C–C), 1.389(30)Å and r(C–N), $154(17)$ Å. The molecule is linear in the vapour phase. In the crystalline state, at $-95^{\circ}C^{197}$, the molecules lie across centres of symmetry and have $r(C-N)$, 1.130(15)Å; $r(C-C)$, 1.37(2)Å; and <(C-C-N), $179.6(0.3)$ °. The nitrogen atoms lie in approximate hexagonal close packing: no particularly short intermolecular distances were noted.

Cyanogen isocyanate, NCNCO, is planar¹⁹⁸. By making a number of assumptions, namely that the NCN and NC0 fragments are linear, that the NC0 fragment has the same dimensions as in HNCO¹⁰, and that the terminal N-C distance is 1.164 Å , as found¹⁹⁹ in the azide, the remaining N-C distance, r(NC-NCO) was found to be 1.283 Å, and the C-N-C angle to be 140° . The skeletal bending frequency δ (C-N-C) was found to be 144 ± 40 cm⁻¹.

Cyanogen azide, $NCN₃$, is also planar¹⁹⁹: in determining the structure the only assumption made was that the N_3 group was linear. The parameters obtained were: $r(N-C)$ (terminal), 1.164(5)Å; $r(C-N_a)(cen$ tral), $1.312(20)$ Å; $r(N_a-N_b)$, $1.252(10)$ Å; $r(N_b-N_c)$, $1.133(10)$ Å; < (C-N_a-N_b), 120.2(1.0)°; and <(N_a-C-N), $176.0(2.0)$ °, such that the CN group is tilted away from the azide group. This tilt is similar to that observed in $NCSCN^{169}$ and in other pseudohalides.

The triselenocyanate ion, $(SeCN)₃$, discussed earlier^{179,180,181} may be regarded as a pseudohalogen analogue of ions such as triiodide I_3 ⁻. The doubly bridging SeCN groups in the $Se_2(SeCN)_6^{-2}$ ion¹⁸² are analogous to bridging iodine in species such as $AICI₆²⁰¹$ and $I_2Cl_6^{202}$.

11. Polymeric Pseudohalogens

Polymers of HCN and its Derivatives

Dicyandiamide is the dimer of NH₂CN and has the form 2^{03} :

$$
NH_2\atop NH_2\atop \overbrace{C\stackrel{a}{=}N}\atop C\atop V\atop O\atop N}
$$

the C-N distances designated a, b, c are 1.36A, 1.28A and 1.22Å respectively; the C-N-C angle is $120(4)^\circ$.

The majority of polymerised cyanides are trimers and are based on planar C_3N_3 rings: the parent compound of this series is cyanuric acid $(HNCO)_{3}$, and the remainder are all derivatives of its enol form.

The principal structural parameters for a number of cyanuric compounds, and for sym -triazine $(HCN)_{3}$, are collected in Table XVIII.

Cyanuric acid has been studied by X-ray diffraction both at 100° K and at 295° K²⁰⁴. The principal effect of lowering the temperature is to reduce the uncertainties in the parameters; on lowering the temperature, the Debye-Waller temperature factors are reduced, and more diffraction maxima have significant intensity. A low temperature neutron diffraction study has also been undertaken²⁰⁵.

The major difference observed between the X-ray and neutron studies is the N-H distance, 0.9OA determined by X-rays and 1.033\AA determined by neutrons. Neutrons are scattered by atomic nuclei, so that the neutron diffraction experiment yields an internuclear distance: X-rays are scattered by electrons: in the case of hydrogen atoms, the centroid of the electron cloud is not coincident with the nucleus but is always closer to the neighbouring atom, so that the X-ray bond distance to hydrogen almost invariably appears to be too short.

In cyanuric fluoride²⁰⁶, chloride²⁰⁷ and amide²⁰⁷, the bond distance from carbon to the substituent is in each case longer than that found in the parent monomers^{3, 158}. D_{3h} molecular symmetry was assumed for each of these compounds.

Cyanuric azide has the usual C_3N_3 ring²⁰⁸: in the azide group $r(N_a-N_b)$ is 1.26 Å; $r(N_b-N_c)$, 1.11 Å; and \leq (C-N_a-N_b) is 114°. The tricyanomelamine anion $(NCN \cdot CN)_3^{-3}$ is a polymerisation product²⁰⁹ of the dicyanamide $N(CN)_2$ ⁻, ion.

Sym-triazine, the trimer of hydrogen cyanide, has been studied both by Raman spectroscopy 2^{11} and by X -ray diffraction²¹². In deriving a structure from the rotational data, it was assumed that the C-H distance was 1.084 \AA , somewhat longer than that in HCN itself³: in addition it was assumed that the molecule was planar. The only major difference between the vapour

TABLE XVIII. Principal Structural Parameters of Cyanuric Acid and its Derivatives.

Compound	$r(C-N)$ Å	\langle (C-N-C) \circ	$<(N-C-N)$ ^o	Method ^a	Ref.
	1.372(1)	124.7(0.1)	115.3(0.1)	XL	204
(HNCO)	1.373(6)	124.5(0.5)	115.2(0.5)	Х	204
	1.370	124.6	115.4	N	205
(FCN) ₃	1.333(9)	113(1)	127(1)	E	206
(CICN) ₃	1.33(2)	115(3)	125(3)	Е	207
$(NH_2CN)_3$	1.34(1)	117(3)	123(3)	Е	207
$(N_3CN)_3$	1.35	113	127	X	208
$(NCN \cdot CN)_{3}^{-3}$	1.34	114	126	X	209
$(C_6H_5CN)_3$	1.335(7)	115.5(1.0)	124.5(1.0)	X	210
	1.338(1)	113(1)	127.5(1.0)	\mathbb{R}	211
(HCN) ₃	1.319(5)	113.2(0.4)	126.8(0.4)	X	212

 $^{\circ}E =$ Electron Diffraction; N = Neutron Diffraction; R = Rotational Raman Spectroscopy; X = X-ray Diffraction; $XL = Low-temperature X-ray$ Diffraction.

phase structure, and that determined by X-ray diffraction lies in the C-H distance: as determined in the X-ray experiment, this is 0.998A, and is too short, as discussed above for $(HNCO)_3$. The rotational Raman spectrum affords moments of inertia, which are functions of nuclear position.

12. **Discussion**

Perhaps the most striking feature about the structures of the ionic pseudohalides of the metals of Groups I, IIA and III, is the common occurrence of structures closely related to those simple archetypes, the $6:6$ NaCl and $8:8$ CsCl structures. As a consequence of this, it may be supposed that these structures are almost wholly ionic in character and that a principal determinant of the detailed arrangement is geometrical packing, in such a way as to minimise the lattice energy.

Without doubt, the structures which provide the most accurate dimensions of an ionic pseudohalide are those of the azides^{36,37,43,45}, of which the neutron study⁴⁵ of barium azide is the most thorough and accurate. This provides a mean N-N distance, uncorrected for libration, of $1.168(1)$ Å: corrected for libration³⁶, the "best" N-N distance is 1.174\AA .

There has unfortunately been no recent, high-accuracy study, of an ionic cyanide in which the cyanide groups are free from rotations, and a neutron diffraction study of the low temperature rhombohedral phase of caesium cyanide would consequently be welcome. The more recent studies of the alkali metal cyanides $30,31$ have been concerned more with molecular dynamics than with static geometry. No ionic cyanate has been the subject of an accurate structure determination, nor has an ionic thiocyanate been studied recently: in consequence, no really accurate values are known for the geometrical parameters of isolated NCO⁻ and NCS⁻ ions. The most accurate $N-C$ distance in the linear, symmetrical cyanamide ion, NCN^{-2} , is that found⁴⁸ in the calcium salt, $1.224(16)$ Å: this value is uncorrected for libration.

In molecular pseudohalides, it has generally been assumed, in order to simplify a structure analysis by electron diffraction or microwave spectroscopy that fragments N-X-Y, (where $X-Y = C-O$, C-S, N-N or $(-N)$ are linear, and also that fragments $M-C-N$ in cyanides are linear. Any slight deviation from linearity in the solid state, as revealed by X-ray diffraction, which determines coordinates for each atom independent of all other atoms, has then been ascribed to the influence of intermolecular forces. However when this assumption has been relaxed, in microwave studies of NF_2CN^{157} , PF_2CN^{156} , $ONCN^{163}$, $S(CN)_2^{163}$, $CINCO^{192}$ and $CIN₃¹⁹³$, the M-C-N or N-X-Y fragment has been found to be bent, with the distal end of the frag-

ment in question tilted away from the rest of the molecule. It seems possible that many other molecular pseudohalides would turn out to have bent MCN or NXY fragments if the restriction of linearity were to be removed; although those which with linear MCN or NXY groups are symmetric tops may not undergo such bending. Often this relaxation would not be possible in a vapour phase structure determination, since the introduction of further geometrical parameters might complicate the analysis to the point of insolubil $ity - after all, simplification of the problem to bring$ it within the bounds of tractability is usually the sole reason for applying constraints. However, such an assumption is quite likely to influence the values of the other geometrical parameters, as found for PF_2 CN^{155, 156}; comparison of structural parameters must therefore be made with caution, especially if comparing structures solved with and without an assumption of linearity. Almost certainly, the parameters for many compounds have associated with them standard deviations which are far too small to reflect the effects of a linearity assumption. There may be a number of such structures recorded in the literature whose parameters are of high precision, but low accuracy.

While structures are known of examples of all the pseudohalides of carbon and silicon, their neighbouring elements in the periodic table are represented only by an incomplete set of pseudohalide structures. Of boron, only isothiocyanates are structurally characterised; an isothiocyanate structure is lacking for germanium, both isocyanate and azide of tin, an azide for phosphorus, and an isothiocyanate structure for chlorine.

From this rather incomplete set of structures, what generalisations emerge? Firstly, so far as the structures are known, isocyanates and especially isothiocyanates of boron, silicon and tin appear to have ground vibrational states in which the minimum energy configuration has \langle (M–N–C) 180 $^{\circ}$; while these derivatives of hydrogen, carbon, germanium, phosphorus and chlorine appear to have distinctly bent ground states. Secondly, for all elements forming discrete monomeric derivatives except chlorine, the azides appear to have essentially the same $M-N_a-N_b$ angle, approximately 120°. Thirdly, in the solid state structures, there is an unmistakable tendency, observed in the derivatives of Groups III, IV, V and VII towards more ionic structures on passing from the lighter elements of the group to the heavier.

The isocyanates and isothiocyanates of silicon are linear at nitrogen in their vibrational ground states (cf. Table VIII). This has generally been attributed 213 to a $p_{\pi}-d_{\pi}$ interaction between the occupied π -orbitals of the pseudohalide and (vacant) $3d_{\pi}$ orbitals on silicon: photo-electron spectra have been interpreted²¹⁴ in terms of this view. This view seems however to be inadequate, as follows: (a) boron isothiocyanates are linear at nitrogen, in particular $NH_3 \cdot BH_2NCS^{77}$: it

TABLE XIX. Some Non-bonded Distances in Azides and Isocyanates.

	$R = H$	CH,	SiH ₃	GeH ₂	
$r(R \cdots C)$ in RNCO(Å)	1.975°	2.464°	2.83^d	2.858^{e}	2.53^t
$r(R \cdots N_b)$ in $RN_3(A)$	$1.862^{\rm b}$	2.290 ^c	2.67 ^d	2.684^e	2.45^{8}
$\varDelta^h(\AA)$	0.11	0.17_{4}	0.16	0.17 ₄	0.08

"Ref. 10. b Ref. 18. c Ref. 118. d Ref. 121. c Ref. 130. f Ref. 192. g Ref. 193. h $\Delta = \{r(R \cdots C) - r(R \cdots N_b)\}.$

seems unlikely that $3d_{\pi}$, or $3p_{\pi}$ orbitals for that matter, of boron make any significant contribution to the bonding in this compound: (b) the isocyanate and isothiocyanate of the PF_2 group exhibit¹⁶⁴ angles at nitrogen little different from those in the CH₃ derivatives $17,118$, and markedly smaller than those in the $SiH₃$ compounds^{119, 120}. Chlorine isocyanate¹⁹² has an angle at nitrogen (119.4) ° smaller even than in $HNCO¹⁰$ or MeNCO^{117, 118}. While it may be argued¹⁶⁴ that these results indicate merely a diminished d_r contribution, they are the exact opposite of what one might expect on the basis of orbital contraction²¹⁵. On going from left to right across a row of the periodic table, the effective nuclear charge of the elements increases: the higher the effective nuclear charge, the more the higher unoccupied atomic orbitala (including 3d in the examples of phosphorus and chlorine) arc contracted in size and lowered in energy, so becoming more likely to participate significantly in chemical bonding. Fluorination of phosphorus will only accentuate this; (c) the best available potential function for $Si-N-C$ bending in $SiH₃NCO$ indicates¹²¹ that the energy required to change the Si-N-C angle between 180° and 140° is less than 1 kcal/mol. A similar result will be found for the bending potential of any of these pseudohalides in which there is a significant quartic term.

It is consistently found that azides $RN₃$ have a significantly smaller angle at N_a than do the isoelectronic socyanates RNCO. Thus for $R = H$, the angles are 14.1[°] ¹⁸ and 128.1^{° 10}; R = CH₃, 116.8[°] ¹¹⁸ and 40.3[°] ¹¹⁸; R = SiH₃, 123.8[°] ¹⁴⁰ and 152.7^{° 121}; R = GeH₃, 119° ¹³⁰ and 141.3° ¹³⁰; and R = Cl, 108.7° ¹⁹³ and 119.4° 192. This has been rationalised^{118,216,217}, in terms of structures for isocyanates of the form $\ddot{+}$

$$
R - N = C - C
$$

whose analogues for azide are less favourable, because of excessive charge separation. However, it should be noted that in terms of this rationalisation, angles at nitrogen are expected to be smaller in isothiocyanates as the form

$$
R - N = C - S
$$

is less favoured in the presence of the less electronegative sulphur atom. The observed R-N-C angle is in fact greater in isothiocyanates than in isocyanates for $R = H$ (isothiocyanate data first), 135.0°¹¹ and 28.1° ¹⁰; R = CH₃, 141.6^o ¹¹⁸ and 140.3^o ¹¹⁸; R = LiH_3 , 163.8^o ¹²¹ and 152.7^o ¹²¹; R = Me₃Si, 154^{o 124} and 150° ¹²⁴; and R = PF₂, 140.5° ¹⁶⁴ and 130.6° ¹⁶⁴.

An alternative interpretation has been suggested¹⁴⁰ for the differences between azides and isocyanates in terms of the steric interaction of non-bonded atoms 81 . This approach supposes that in those pseudohalides having angles at N_a appreciably greater than 120°, these angles are determined *primarily* by the steric properties of the immediate neighbours of N_a , that is to say by the non-bonded contact distances, in a hardatom approximation, $R \cdot \cdot \cdot C$ in RNCO and $R \cdot \cdot \cdot N_b$ in RN3. In Table XIX are set out some non-bonded distances in isocyanates and azides: for $R = CH_3$, SiH₃ and GeH₃, $\Delta = \{r(R \cdot \cdot \cdot C) - r(R \cdot \cdot \cdot N_b)\}\$ is essentially identical, and may be identified with the difference in non-bonded radii of carbon and central nitrogen in these pseudohalogens. That the hydrogen and chlorine species give different Δ values is probably only a reflection of the fact that in both $HN₃¹⁸$ and $CIN₃¹⁹³$, the angle at N_a is less than 120 \degree and may not therefore be primarily determined by steric phenomena.

This approach, simple as it is, casts little light on the consistent differences in skeletal angle $R-N-C$ between isocyanates and isothiocyanates. Although the bending at the central atom in Cl. NCO¹⁹² and ClN₃¹⁹³ can be simply rationalised in terms of valence bond structures

which presumably implicate π orbitals on chlorine, contrary to the suppositions earlier made about the angles at N_a in chlorine pseudohalides, no such simple rationalisation can be put forward for the bending at carbon in NF_2CN^{157} , PF_2CN^{156} , $ONCN^{163}$ and $S(CN)_2$ ¹⁶⁹. In an attempt to gain a better understanding of the bond angles in molecular pseudohalides, a study of the bending potential functions in these molecules has been initiated in this laboratory 218 .

It is almost a truism that on going from the lighter to the heavier members of p-block group, the solid phase structures tend to become more ionic in character: part, at least, of the cause for this may be traced to the reduced polarisation power of the larger, heavy

cations. Such a variation is noticeable among the cyanides of Groups IV, V and VI, and to a lesser extent, among the isothiocyanates azides and carbodiimides of Group IV also.

While rather few structures are known of the pseudohalides of zinc and cadmium, it is mercury of all the Group IIB elements which presents such a bewildering variety of structures in its pseudohalides. Perhaps, with the benefit of hindsight, this should not be so surprising: the structural chemistry of mercury is among the most rich and diverse of any element's²¹⁹. The general features of the mercury pseudohalide structures, however, are those found in the derivatives of other larger, heavier cations: cyanide and thiocyanate are bidentate, azide is at least bidentate and perhaps polydentate, and the coordination number of the cation is increased from four to six and beyond. Although no analogues of the cation⁶⁰ $Zn(OH₂)₄(NCHgCN)₂⁺²$ are known for other molecular cyanides, this may well have the same rationalisation as many other curiosities in science; namely that the experiment using $Hg(CN)_2$ as a ligand to zinc(H) has been tried and the product characterised, while the experiments with say $Me₂ AsCN$ or $Me₃SiCN$ remain as yet unattempted. Since a number of molecular cyanides are known to be capable of functioning as donors towards boron trihalides^{$94,95,220$}, there seems little reason why certain of them should not act as donors to p-block metals.

For only two pseudohalides of lead(II), the azide¹⁴⁴ and the cyanamide¹⁴⁹, are structures known: no structures appear to be known for pseudohalides of thallium(II1) or bismuth. In view of the structural diversity displayed by the known pseudohalides of mercury and lead, further investigation of bismuth, lead and thallium (of the type $RTIX_2$ and R_2TX) derivatives would surely be rewarding.

Turning now from the gross features of molecular geometry to the fine detail, namely bond distances, it is of interest to compare $M-N_a$ distances in some N-bonded molecular pseudohalides; these, for convenience, are collected in Table XX. With the exception of $M = H$, some clear patterns emerge. The M-N_a distance is always longer in an azide than in an isocyanate, where in turn it is longer than in a carbodi-

imide: $r(M-N_a)$ seems also to be longer in isothiocyanates than in isocyanates. While for certain individual pairs of molecules, the differences in $r(M-N_a)$ are barely significant, overall the pattern is consistent and must be regarded as real. For the hydrogen pseudohalides, there is no significant difference between any pair of $H-N_a$ distances.

It should be emphasised that none of the bonded distances of Table XX, can be used for comparison with some 'ideal' distance derived from addition of bonded atomic radii. Bonded atomic radii are by no means an additive molecular property, nor does the commonly used electronegativity correction effect a great improvement⁸². Hence, no deduction can be made from an isolated distance of the type $M-N_a$ about the occurrence or otherwise of any π interaction between M and N_a . In general, *qualitative* attempts to describe the fine detail of the electron distribution within a polyatomic molecule from a knowledge only of the relative nuclear positions, should be treated with great reserve. At present, however, no simple rationalisation of the trends shown up in Table XX is possible: confirmation of these trends by elimination of some of the gaps in the table would indeed be welcome.

13. References

- 1 L. Birckenbach and K. Kellermann, Chem. *Ber., 58,* 786, 2377 (1925).
- 2 A. W. Downs, *Chem. Comm.,* 1290 (1968).
- 3 J. K. Tyler and J. Sheridan, *Trans. Faraday Sot., 59, 2661 (1963).*
- *4* M. Winnewisser and H.K. Bodenseh, Z. *Naturforsch., 22u, 1724 (1967).*
- *5* P.B. Blackburn, R.D. Brown, F.R. Burden, J.G. Crofts and I. R. Gillard, *Chem. Phys. Letters, 7, 102 (1970).*
- *6* D.A. Dieterich. I. C. Paul and D. Y. Curtin, *Chem. Comm.,* 1710 (1970).
- 7 A. Caron, G.J. Palenik, E. Goldish and J. Donohue, *Acta Cryst., 17, 102 (1964).*
- *8* B. Beagley and T.G. Hewitt, *Trans. Faraday Sot., 64, 2561 (1968).*
- *9* W.J. Delmage and W.N. Lipscomb, *Acta Cryst., 4,* 330 (1951).
- L.H. Jones, J. N. Shoolery, R. G. Shulman and D. M. Yost. J. Chem. Phys., *18,* 990 (1950).
- 1 R. Kewley, K. V. L. N. Sastry and M. Winnewisser, *J. Mol.* 52 *Spectroscopy, 10,* 418 (1963).
- 12 C. P. Courtoy. *Ann. Sot. Sri. Bruxelles,* 73, 5 (1959).
- 3 R.W. Kilb, C.C. Lin and E.B. Wilson Jr., *J. Chem. Phys.*, 26, 1695 (1957)
- 14 B.P. Stoicheff, *Canad. J. Phys.,* 36, 218 (1958).
- 15 M. R. Truter, *Acfu Crysf.,* 22, 556 (1967).
- 6 L. Merritt and E. Lanterman, Acta Cryst., 5, 811 (1952).
- 17 W.C. van Dohlen and G.B. Carpenter, *Acfa Cryst.,* 8, 646 (1955).
- M. Winnewisser and R. L. Cook, J. *Chem. Phys.,* 41, 999 18 (1964).
- CC. Costain,J. Chem. *Phys.,* 29, 864 (1958). 19
- 0 H. Boersch, *Sitzungsber. Akad. Wiss. Wien, 144,* 1 (1935)
- 1 C.J. Brown, Acta Cryst., 21, 146 (1966).
- N'.V. Sidgwick and H.M. Powell, *Proc. Roy. Sot. (A),* 22 176, 153 (1940).
- E.B. Wilson Jr.,Pure *Appl. Chem., 7,* 23 (1963). 23
- A.H. Clark and B. Beagley, *Trans. Faraday Sot., 67,* 24 *2216 (1971).*
- 5 H.J. Verweel and J.M. Bijvoet, Z. *Krist., 100,* 201 (1938).
- J.M. Bijvoet and J.A. Lely, *Rec. Trav. Chim., 59, 908* 26 *(1940).*
- 7 J.A. Lely, *Dissertation*, Utrecht, 1942.
- L.A. Siege1.J. *Chem. Phys., 17,* 1146 *(1949).* 28
- *N.* Elliott and J. Hastings, *Acfa Cryst., 14, 1018 (1961).* 29
- 0 D.L. Price, J.M. Towe, J.J. Rush, E. Prince, D.G. Hinks and S. Susman, *J. Chem. Phys., 56, 3697 (1972).*
- J.M. Rowe, D.G. Hinks, D.L. Price, S. Susman and J.J. 31 Rush,J. *Chem. Phys., 58, 2039 (1973).*
- **J. A.** Lely and J.M. Bijvoet, *Rec. Trav. Chim., 63, 39* 32 *(1944).*
- M.T. Le Bihan, Acta Cryst., *11, 770 (1958).* 33
- W.R. Haaf and G.B. Carpenter, *Acra Cryst., 17, 730* 34 *(1964).*
- 5 U. Muller, "Structure and Bonding", Springer–Verl. Berlin, 14, 141 (1973).
- G.E. Pringle and D.E. Noakes, *Acta Cryst., B24, 262* 36 *(1968).*
- *U.* Muller, Z. anorg. allg. *Chem., 392, 159 (1972).* 37
- J.F. Griffin and P. Coppens, *Chem. Comm., SO2 (1971).* 38
- 9 M. Bassière, *Mém. Serv. Chim. Etat (Paris)*,, 30, 30 *(1943).*
- 0 R.W.G. Wyckoff, "Crystal Structures", Interscience New York, N.Y., 2nd ed., Vol. 2 (1963).
- T. C. Waddington, J. *Chem. Sot., 2499 (1959).* 41
- 2 W. Bussem, P. Gunther and R. Tubin, Z. *Physik. Chem.*, 81 *24B,* 1 (1934).
- G.E. Pringle and D.E. Noakes, *Acta Cryst., B24, 262 (1968).*
- H. Krischner, *Monatsch.* Chem., 99, 2134 (1968). 44
- 5 C.S. Choi, *Acta Cryst.*, *B25*, 2638 (1969).
- E.M. Walitzi and H. Krischner,Z. *Krist., 131, 25 (1970).* 46
- 7 K. Torkar, H. Krischner and H. Radl, *Monatsch. Chem.*, *96, 932 (1965).*
- 48 *N.-G.* Vannerberg. *Actu* Chem. *Stand., 16, 2263 (1962).*
- 49 K.-G. Strid and N.-G. Vannerberg, *Acta Chem. Stand, 20, 1064 (1966).*
- *50 G.S.* Zhdanov, *Comp. Rend. Acad. Sci. URSS, 31, 352* 88 M. Strada, *Rend. Accad. Lincei, 19, 809 (1934). (1941).* 89 M. Strada, *Gazz. Chim. Ital., 64,* 400 (1934).
- 10 51 E.A. Shugam and G.S. Zhdanov, *Acta Physicochim. URSS, 20, 247 (1945).*
- R. C. Seccombe and C. H. L. Kennard, J. *Organometallic Chem., 18, 243 (1969).*
- 53 R.G. Dickinson,J. *Am.* Chem. Sot., 44, 774 (1922).
- 54 A. Sequeira and R. Chidambaram. *Acta Cryst., 20, 910 (1966).*
- 55 *J.C.* Mills, H. S. Preston and C. H. L. Kennard,J. Organo*metallic Chem., 14, 33 (1968).*
- 56 F.H. Kruse,Acla *Crysf., 16, 105 (1963).*
- 57 *S.* Scavnicar, Z. *Krist., 118, 248 (1963).*
- 58 *C.* Mahon and D. Britton. *lnorg.* Chem., *10,* 2331 (171).
- 59 C. Mahon and D. Britton, *Inorg. Chem., 10, 586 (1971).*
- 0 C. Mahon, *Inorg. Chem.*, *10*, 1813 (1971).
- 61 G. S. Zhdanov and Z.V. Zvonkova, *Zhim. Fiz. Khim., 26, 586 (1952).*
- 62 L. Cavalca, M. Nardelli and G. Fava, *Actu Cryst., 13,* 125 (1960).
- 63 A.L. Beauchamp and D. Goutier, Can. J. *Chem., SO, 977 (1972).*
- 64 A.L. Beauchamp, B. Saperas and R. Rivest, Can. *J.* Chem., 49, 3579 (1971).
- 65 G.S. Zhdanov and V.V. Sanadze,Zh. *Fiz. Khim., 26, 469 (1952).*
- 66 J. W. Jeffery, *Actu Cryst., 16, A66 (1963).*
- 67 W. Stahl and M. Straumanis. 2. *Physik.* Chem., 193, 121 (1944).
- 68 E. Frasson, A. Turco and C. Panatonni, *Gazz. Chim. Ital.,* 91, 750 (1961).
- 69 A. Korczynski, *Roczniki Chem., 36, 1539 (1962).*
- 70 H. Scoulardi, *Acra Cryst.,* 6, 65 1 (1953).
- 71 Z.V. Zvonkova and G. S. Zhdanov, *Zh. Fiz. Khim., 26, 586 (1952).*
- 72 *1.* Agrell and N.-G. Vannerberg, *Acia* Chem. *Stand.,* 25, 1630 (1971).
- 73 I. Agrell, *Acfa Chem. Stand., 24, 1247 (1970).*
- 74 *1.* Agrell,Aczu *Chem. Stand., 24, 3575 (1970).*
- 75 U. Muller, Z. *anorg. allg.* Chem., 399, 183 (1973).
- 76 W. Beck. C.-J. Oetker and P. Swoboda, Z. *Naturforsch., 28b, 229 (1973).*
- 77 D.S. Kendall and W.N. Lipscomb,lnorg. *Chem., 12, 2920 (1973).*
- 78 C.E. Nordman and C. Reimann, *J. Am. Chem. Sot., 81, 3538 (1959).*
- 79 P.T. Clarke and H.M. Powell. *J. Chem. Sot. (B),* 1172. (1966).
- 80 D.S. Kendall and W.N. Lipscomb, *lnorg. Chem., 12, 2915 (1973).*
- L. S. Bartell, *J. Chem. Educ., 45, 754 (1968),* and references therein.
- 43 82 C. Glidewell, *Inorg. Chim. Acta Revs., 7, 69 (1973),* and references therein.
- 83 U. Muller,Z. anorg. ullg. *Chem., 382,* 110 (1971).
- 84 J. L. Atwood and W. R. Newberry III, *J. Organometallic Chem., 42, C77 (1972).*
- 5 F. Weller and K. Dehnicke, *J. Organometallic Chem.*, 36, *23 (1972).*
- 86 P.L. Goggin, I.J. McColm and R. Shore, *J.* Chem. Sot. *(A),* 1314 (1966).
- 87 D.H. Templeton and G.F. Carter. *J. Phys. Chem., 58, 940 (1954).*
-
-
- *90 See,* for example, 0. Kennard and D.G. Watson, "Molecular Structure and Dimensions", International Union of Crystallography, Three Vols; 1970, 1971.
- 91 L.F. Thomas, J.S. Heeks and J. Sheridan, Z. *Electrothem., 61, 935 (1957).*
- 2 J.G. Baker, D. R. Jenkins, C. N. Kenney and T. M. Sugden, *Trans. Faraday Sot., 53, 1397 (1957).*
- 3 L.J. Nugent, D.E. Mann and D.R. Lide Jr., J. Chem. *Phys.,* 36, 965 (1962).
- J. L. Hoard, S. Geller and T.B. Owen, *Acta Cryst., 4,* 94 405 (1951).
- 5 S. Geller and O.N. Salmon, *Acta Cryst.*, 4, 379 (1951).
- A.R. Conrad, C. Glidewell, D.W.H. Rankin and A.G. 96 Robiette, unpublished.
- 97 N. Muller and R.C. Bracken, J. *Chem.* Phys., 32, 1577 (1960).
- 8 N.W. Alcock and G.M. Sheldrick, personal communica tion.
- 99 R. Varma and K.S. Buckton, J. *Chem. Phys., 46, 1565 (1967).*
- 100 *J.S.* Muenter and V. W. Laurie,J. *Chem. Phys., 39,* 1181 (1963).
- 101 M.C. L. Gerry and T.M. Sugden, *Trans. Faraday Sot., 61, 2091 (1965).*
- 102 E.C. Thomas and V. W. Laurie,l. *Chem. Phys., 44, 2602 (1966).*
- 103 L. F. Thomas, E.J. Sherrard and J. Sheridan, *Trans. Faraday Sac., 51, 619 (1955).*
- 04 E.O. Schlemper and D. Britton, *Inorg. Chem.*, 5, 511 (1966).
- 05 E.O. Schlemper and D. Britton, *Inorg. Chem.*, 5, 507 (1966).
- 106 D. Seyferth and N. Kahlen, J. Org. *Chem., 25, 809 (1960).*
- 107 M.R. Booth and S.G. Frankiss, *Chem.* Comm., 1347 (1968).
- 108 Y. M. Chow and D. Britton, *Acfa Crysf.,* B27, 856 (1971).
- 109 J. Konnert. D. Britton and Y.M. Chow, *Acfa Crysf., B28,* 180 (1972).
- 110 H.M. Powell and D. Crowfoot, Z. *Krist.,* 87, 370 (1934).
- 111 H. S. Gutowsky,J. Chem. *Phys.,* 17, 128 (1949).
- 12 P.B. Blackburn, R.D. Brown, F.R. Burden, J.G. Crofts and I. R. Gillard, *Chem. Phys. Letters, 7, 102 (1970).*
- 113 M. Winnewisser, *Chem.* Phys. *Letters, II,* 515 (1971).
- 114 P. Andersen, B. Klewe and E. Thorn, *Acfa Chem. Stand, 21, 1530 (1967).*
- 115 *C.* Bondi, M. Bonamico, L. Tovelli and A. Vaciago, *Chem.* Comm., 191 (1965).
- 116 R. Desiderato and R.L. Sass, *Acta Cryst., 18,* 1 (1965).
- 117 R.G. Lett and W. H. Flygare, J. Chem. Phys., 47, 4730 (1967).
- 18 D.W.W. Anderson, D.W.H. Rankin and A. Robertsor J. *Mol. structure,* 14, 385 (1972).
- 19 M.C.L. Gerry, J.C. Thompson and T.M. Sugden, Nature, 211, 846 (1966).
- 120 D.R. Jenkins, R. Kewley and T.M. Sugden, *Trans. Faraday Sot., 58, 1284 (1962).*
- 121 *C.* Glidewell, A.G. Robiette and G.M. Sheldrick, *Chem. Phys. Letters, 16, 526 (1972).*
- 22 S.J. Cyvin, J. Brunvoll and A.G. Robiette, Chem. Phys. *Letters, 11,* 263 (1971).
- 23 A.J. Careless, M.C. Green and H.W. Kroto, Chem. *Phys. Letters, 16, 414 (1972).*
- 124 K. Kimura, K. Katada and S.H. Bauer, J. *Am.* Chem. Soc., 88, 416 (1966).
- 125 W. Airey, C. Glidewell, A.G. Robiette and G.M. Sheldrick,/. *Mol. Structure,* 8, 435 (1971).
- 126 D. F. Koster, *Spectrochim. Acta, 24A, 395 (1968).*
- 127 R. L. Hilderbrandt and S. H. Bauer, /. *Mol. Structure,* 3, 325 (1969).
- 128 K.E. Hjortaas, *Acta* Chem. *Stand.,* 21, 1381 (1967).
- 29 G.M. Sheldrick and W.S. Sheldrick, Personal communi cation.
- 130 J.D. Murdoch and D. W.H. Rankin, *Chem. Comm., 748 (1972).*
- 131 K.R. Ramaprasad, R. Varma and R. Nelson, J. *Am. Chem. Sot., 90, 6247 (1968).*
- 132 R.A. Forder and G.M. Sheldrick, *J. Organometallic Chem., 21, 115 (1970).*
- 133 R.A. Forder and G.M. Sheldrick, J. *Organometallic Chem., 22, 611* (1970).
- 134 G.M. Sheldrick, W.S. Sheldrick, R.F. Dalton and K. Jones, *J. Chem. Soc. (A)*, 493 (1970).
- 35 G.M. Sheldrick and W.S. Sheldrick, *J. Chem. Soc. (A)*, 490 (1970).
- 136 Y.M. *Chow,lnorg.* Chem., *10,* 673 (1971).
- 137 J.B. Hall and D. Britton, *Acta Cryst.,* B28, 2133 (1972).
- 138 M. Nardelli and 1. Chierici, *Gazz. chim. Ital., 88, 248 (1958).*
- 139 **W.M.** Salathiel and R.F. Curl Jr., /. *Chem. Phys., 44,* 1288 (1966).
- 140 C. Glidewell and A.G. Robiette, *Chem. Phys. Letters,* In press.
- 41 E.A.V. Ebsworth and M.J. Mays, *J. Chem. Soc.*, 3450 (1964).
- 142 E.A.V. Ebsworth, D.R. Jenkins, M. J. Mays and T.M. Sugden, *Proc. Chem. Sot.,* 21 (1963).
- 143 U. Muller and H. Barnighausen, *Acta Cryst., B26, 1671 (1970).*
- 144 *C.S.* Choi and H.P. Boutin,Acra *Cryst.,* 825, 982 (1969).
- 145 A.T. Vincent and P. J. Wheatley, /. *Chem. Sot. (Perkin lI), 687 (1972).*
- 146 A.T. Vincent and P. J. Wheatley, J. *Chem. Sot. (Perkin II*), 1567 (1972).
- 147 R.A. Forder and G.M. Sheldrick, J. Chem. Sot. *(A),* 1107 (1971).
- 148 Y.M. Chow,lnorg. Chem., *10,* 1938 (1971).
- 149 M. J. Cooper, *Acta Cryst., 17, 1452 (1964).*
- 150 V.M. Rao, J.T. Yardley and R.F. Curl Jr., J. *Chem. Phys.,* 42, 284 (1965).
- 151 J.A. Lely and J.M. Bijvoet, *Rec. Trav. Chim., 63, 39 (1944).*
- 152 L.K. Frevel, Z. *Krist., 94, 197 (1936).*
- 153 Z.V. Zvonkova and G.S. Zhdanov, *Zh. Fiz. Khim., 23, 1495 (1949).*
- 154 *I.* Lindqvist and B. Strandberg, *Acta Cryst., 10, 173 (1957).*
- 155 *G. C.* Holywell and D. W. H. Rankin, J. *Mol. Structure, 9,* 11 (1971).
- 56 P.L. Lee, K. Cohn and R. H. Schwendeman, *Inorg. Chem.*, 11, 1917 (1972).
- 57 P. L. Lee, K. Cohn and R. H. Schwendeman, *Inorg. Chem.*, *11, 1920 (1972).*
- 58 J.N. Mac Donald, J.K. Tyler and J. Sheridan, J. Mol. *Spectroscopy, 26, 285 (1968).*
- 59 K. Emerson and D. Britton, Acta Cryst., 17, 1134 (1964).
- 160 N. Camerman and J. Trotter, *Can. J. Chem., 41,* 460 (1963).
- E.O. Schlemper and D. Britton, *Acta Cryst.,* 20, 777 161 (1966).
- 62 K. Emerson and D. Britton, *Acta Cryst.*, 16, 113 (1963).
- 63 R. Dickinson, G.W. Kirby, J.G. Sweeny and J.K. Tyler, 194 Chem. *Comm.,* 241 (1973).
- D. W.H. Rankin and S. J. Cyvin, J. *Chem. Sot. (Dalton),* 164 1277 (1972).
- 65 D.W.H. Rankin, *J. Chem. Soc. (Dalton)*, 869 (1972).
- 66 J.P. Faught, T. Moeller and 1.C. Paul, *Inorg. Chem.*, 9, 1656 (1970).
- 67 D.W.J. Cruickshank, Acta Cryst., 17, 671 (1964).
- U. Muller, Z. anorg. allg. *Chem., 388, 207 (1972).* 168
- L. Pierce, R. Nelson and C. Thomas, *J. Chem. Phys.,* 43, 169 3423 (1965).
- 70 S. Nakagawa, S. Takahoshi, T. Kojuna and C.C. Lin, *J. Chem. Phys.,* 43, 3583 (1965).
- 71 J.H. Konnert and D. Britton, *Acta Cryst.*, *B27*, 781 (1971).
- 72 R. Bringeland and O. Foss, *Acta Chem. Scand.*, 12, 79 (1958).
- C.J. Marsden and G.M. Sheldrick, *J. Mol. Structure, 10,* 173 413 (1971).
- 174 W.S. McDonald and L.D. Pettit, *J. Chem. Soc. (A)*, 2044 *(1970).* 206
- 175 R.J. Gillespie, *J. Chem. Educ., 47, 18 (1970).*
- 176 F. Feher and K.H. Linde, Z. anorg. allg. Chem., 327, 151 (1964).
- 177 S.M. Ohlberg and P. A. Vaughan, *J. Am. Chem. Sot., 76, 2649 (1954).*
- 178 *0.* Aksne5 and 0. Foss, *Acra Chem. Scund., 8, 1787 (1954).*
- *S.* Hauge and J. Sletten, *Acts Chem. Stand., 25, 3094* 179 211 *(1971).*
- 180 S. Hauge, *Acta Chem. Scand.*, 25, 3103 (1971).
- 181 S. Hauge,Actu *Chem. Stand., 25,* 1134 (1971).
- 182 S. Hauge, *Actu Chem. Scund., 25,* 1135 (1971).
- 183 K. Ase, K. Boyum, 0. Foss and K. Maroy, *Acta Chem.* Scand., 25, 2457 (1971).
- 184 K. Ase, O. Foss and I. Roti, Acta Chem. Scand., 25, 3808 (1971).
- 185 R.B. Heiart and G.B. Carpenter, *Acta Cryst, 9, 889 (1956).*
- *186 S.* Geller and A.L. Schawlow, *J.* Chem. *Phys.,* 23, 779 (1955).
- 187 J.A.A. Ketelaar and J.W. Zwartsenberg, *Rec. Trav.* Chim., 58, 449 (1939).
- 188 B. Borgen, 0. Hassel and C. Romming, *Acta Chem. Stand., 16, 2469 (1962).*
- *189* E.O. Schlemper and D. Britton, *Actu Cryst., 18,* 419 (1965).
- 190 H. Oberhammer, *Z. Nuturforsch., A26, 280 (1971).*
- 91 H.H. Eysel and E. Nachbauer, Z. anorg. allg. Chem., 381, 71 (1971).
- 192 W.H. Hocking and M.C.L. Gerry, *J. Mol. Spectroscopy,* 42, 547 (1972).
- 193 R.L. Cook and M.C.L. Gerry, *J.* Chem. *Phys., 53, 2525 (1970).*
- H. Oberhammer, Z. *Naturforsch., 25A, 1497 (1970).*
- 195 *C.* K. Moller and B.P. Stoicheff, *Can. J. Phys.,* 82, 635 (1954).
- 196 A.G. Maki, *J. Chem.* Phys., 43, 3193 (1965).
- 197 A.S. Parkes and R.E. Hughes, *Acta Cryst., 16, 734 (1963).*
- 198 W.H. Hocking and M.C.L. Gerry, *Chem. Comm.,* 47 (1973)
- 199 C.C. Costain and H. W. Kroto, Can. *J. Phys., 50, 1453 (1972).*
- 2no A.A. Westenberg and E.B. Wilson, Jr., *J. Am. Chem. Sot., 72, 109 (1950).*
- 201 *C.G.* Vonk and E.H. Wiebenga, *Acta Cryst., 12, 859 (1959).*
- 202 K.H. Boswijk and E.H. Wiebenga, *Actu Cryst.,* 7,. 417 (1954).
- 203 E.W. Hughes, *J. Am.* Chem. Sot., 62, 1258 (1940).
- 204 G.C. Verschoor and E. Keulen, *Acta Cryst.,* B27, 134 (1971).
- 205 P. Coppens and A. Vos, *Acta Cryst.*, *B27*, 146 (1971).
- 206 S.H. Bauer, K. Katada and K. Kimura, in "Structural Chemistry and Molecular Biology". A. Rich and N. Davidson (eds.), Freemann, San Francisco, 1968.
- 207 Y. Akimoto, *Bull. Chem. Sot. Japan, 28,* 1 (1955).
- 208 I.E. Knaggs, *Proc. Roy. Sot. (A),* 150, 576 (1935).
- 209 J. L. Hoard, *J. Am. Chem. Sot., 60,* 1194 (1938).
- 210 A. Damiani, E. Giglio and A. Ripamonti, *Acra Cryst., 19,* 161 *(1965).*
- J.E. Lancaster and B.P. Stoicheff, Can. *J.* Chem., 34, 1016 (1956).
- 212 P.J. Wheatley, *Acta Crysl., 8, 224 (1955).*
- 213 E. A. V. Ebsworth in "Organometallic Compounds of the Group IV Elements", A.G. MacDiarmid (ed.), Dekker, New York. N.Y.. I, 1 (1968) and references therein.
- 214 S. Cradock, E.A.V. Ebsworth and J.D. Murdoch, *J. Chem. Sot. (Faraday II), 86 (1972).*
- 215 D.P. Craig, A. Maccoll, R.S. Nyholm, L.E. Orgel and L.E. Sutton, *J. Chem. Sot., 332 (1954).*
- 216 L. Pauling, "The Nature of the Chemical Bond", Cornell, Ithaca, New York, N.Y., 1963.
- J.W. Linnett, *Nature,* 199, 168 (1963). 217
- 218 C. Glidewell and C. Thomson, unpublished work.
- D. Grdenic, *Quart. Rev., 19, 303 (1965).* 219
- D.F. Shriver,J. *Am. Chem. Sot., 85, 1405 (1963).* 220
- *G.* Davidson, L. A. Woodward. K.M. Mackay and P. Ro-221 binson, *Spectrochim. Acta, 23A, 2383 (1967).*