New Pyrazolate-, Hydroxo- and Methoxo-bridged Complexes of Ruthenium(II) Crystal Structure of $[{Ru(\eta-p-MeC_6H_4CHMe_2)}_2-(pz)_2(OH)]$ BPh₄

L A ORO, M P GARCIA, D CARMONA

Departamento de Química Inorganica, Facultad de Ciencias, Universidad de Zaragoza, Saragossa, Spain

C FOCES-FOCES and F H CANO

Departamento de Rayos X, Instituto Rocasolano, CSIC, Serrano, 119, Madrid-6, Spain

Received July 23, 1984

As a continuation of our studies on binuclear rhodium(I) complexes with the pyrazolate ligand (pz^{-}) [1-3], we have recently prepared [4] some stable binuclear rhodium(III) complexes of formula [{Rh(C₅Me₅)}₂(pz)_{3-x}(OR)_x]⁺ (R = Me, x = 2, R = H, x = 1)

In this context, we have initiated research studies on the synthesis of new isoelectronic ruthenium(II) complexes of the type $[{Ru(arene)}(pz)_{3-x}(OR)_x]^+$ Stephenson and coworkers [5, 6] have reported the preparation, properties and relative inertness towards several neutral Lewis bases of arene-ruthenium(II) complexes of formula $[{Ru(arene)}_2(OR)_3]^+$ (R = Me or H)

The tri- μ -hydroxo complexes [{Ru(arene)}₂-(OH)₃]* [5] reacted with pyrazole (1 3 molar ratio) in refluxing acetone (5 h), to give binuclear complexes [{Ru(arene)}₂(pz)₂(OH)]* [arene = p-MeC₆H₄CHMe₂-(p-cymene) (1) or C₆Me₆ (2)], isolated as their BPh₄ salts * The IR spectra of (1) and (2) showed absorption bands at 3555 and 3595 cm⁻¹ respectively, due to ν (OH) The X-ray structure determination of complex (1) (see below) completely substantiates the conclusion that both cations contain two bridging pyrazolate and one bridging hydroxo groups

The addition of pyrazole to $[{Ru(arene)}_2 (OMe)_3] BPh_4$ (3 1) (arene = p-cymene** or C₆-Me₆ [5]) in refluxing methanol (8 h) produced the $[{Ru(arene)}_2(pz)(OMe)_2] BPh_4$ (arene = p-cymene (3) or C₆Me₆ (4)) complexes Their IR spectra showed the presence of strong bands at 1050 (3) and 1040 cm⁻¹ (4) attributed to ν (C–O) along with intense 0 13 14 15 16 10 14 15 16 16 17 19 19

Fig 1 An ORTEP representation of complex (1), showing the atomic numbering The crystallographic two fold axis at (x, 0, 5/6) goes through the O atom and bisects the Ru-Ru' vector Selected bond distances and angles are Ru-O 2.088(2), Ru-N(1) 2.088(3), Ru-N(2') 2.084(3), Ru-G 1.690(1) A, G-Ru-O/N(1)/N(2') 129.2(11)/130.8(1)/131.8(1), O-Ru-N(1)/N(2') 81.2(1)/81.0(1), N(1)-Ru-N-(2') $84.1(1)^{\circ}$, G being the centroid of the ring

absorptions at 540 (3) and 525 cm⁻¹ (4) (Ru–O–Ru) The ¹H NMR spectra of (3) and (4) revealed the usual [BPh₄⁻] multiplets and the coordinated arene signals together with resonances at 8 02d (2H), 6 50t (1H) (pz⁻) and 3 30s (6H) (OMe) (3) and 8 12d (2H), 6 50t (1H), (pz⁻) and 2 65s (6H) (OMe) (4) in the required intensity ratios, supporting the proposed formulation

Presumably all these complexes are formed by protonation of the hydroxo- or methoxo-bridges of the starting complexes by Hpz, to form aquo- or methanol-intermediates, which react with pz^{-} to give the isolated heterobridged compounds in high yields (80-95%)

The molecular structure of (1) has been established by X-ray diffraction on single crystals grown from CH₂Cl₂/Et₂O Crystal data for complex (1) Trigonal, space group $P3_121$, with a = b =100679(2), c = 372665(25) Å, V = 32713(2) Å³, Z = 3, 2219 measured independent reflections, with 2091 observed ones ($I > 3\sigma(I)$) used in the refinement to give R = 0019

The cation shows a crystallographic two fold axis and its more relevant crystallographic data are illustrated in Fig 1 The conformation about the Ru(II) atoms is that loosely referred to as a 'three legged piano stool' The Ru–C (ring) distances range between 2 183(4) and 2 219(4) Å and are comparable to those found for other related complexes [7, 8] The Ru–O bond distance is also analogous to that found in the related hydroxobridged complex [{Ru(η -1,3,5-C₆H₃Me₃)}₂(OH)₃]⁺ [9]

© Elsevier Sequoia/Printed in Switzerland

^{*}Satisfactory elemental analyses were obtained for all new compounds

^{**}This previously unreported complex was prepared by refluxing the corresponding $tri-\mu$ -hydroxo complex in methanol

As expected, the overall geometry of the $Ru(pz)_2$ -(OH)Ru' skeleton closely resembles that found for

the related isoelectronic complex $(Rh(pz)_2(OH)Rh' [4])$ but the intermetallic distances are 3 5277(3) Å for the Ru complex and 3 488(1) Å for the Rh one

In summary, from the synthetic and structural data so far available there seems to exist a parallelism between the pyrazolate chemistry of the Rh^{III}- (C_5Me_5) and Ru^{II}(arene) moleties, although more vigorous reaction conditions are required for the synthesis of the Ru complexes Further work in this area is in progress

References

1 A Tiripicchio, F J Lahoz, L A Oro and M T Pinillos, J Chem Soc, Chem Commun, in press

- 2 R Usón, L A Oro, M T Pinillos, M Royo and E Pastor, J Mol Catal, 14, 375 (1982)
- 3 R Usón, L A Oro, M A Ciriano, D Carmona, A Tiripicchio and M Tiripicchio-Camellini, J Organomet Chem, 224, 69 (1982),
 R Usón, L A Oro, M A Ciriano, M T Pinillos, A Tiripicchio and M Tiripicchio-Camellini, J Organomet Chem, 205, 247 (1981)
 L A Oro, D Carmona M P. Lamata M C. Apreda
- 4 L A Oro, D Carmona, M P Lamata, M C Apreda, C Foces-Foces, F H Cano and P M Maitlis, J Chem Soc, Dalton Trans, in press
 5 T Arthur, D R Robertson, D A Tocher and T A
- 5 T Arthur, D R Robertson, D A Tocher and T A Stephenson, J Organomet Chem, 208, 389 (1981)
- 6 R O Gould, T A Stephenson and D A Tocher, J Organomet Chem, 263, 375 (1984)
- 7 D A Tocher, R O Gould, T A Stephenson, M A Bennett, J P Ennett, T W Matheson, L Sawyer and V K Shah, J Chem Soc, Dalton Trans, 1571 (1983)
- 8 D A Tocher and M D Walkinshaw, Acta Crystallogr, Sect B, 38, 3083 (1982)
- 9 R O Gould, C L Jones, T A Stephenson and D A Tocher, J Organomet Chem, 264, 365 (1984)