A New Series of Sulfur Dioxide Complexes. The Preparation, Characterization, and Reactivity of the Sulfur Dioxide Adducts of a Series of Rhodium(1) Complexes Containing Triphosphine Ligands

P. R. BLUM* and D. W. MEEK

Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, U.S.A. Received July 11, 1977

It has been pointed out that the sulfur dioxide (SO_2) moiety may be as useful a probe for investigating metal ligand bonding in coordination compounds as is the nitrosyl (NO) ligand [1-4]. The SO_2 ligand can bond to a metal atom through the sulfur atom in one of two spatial arrangements, *i.e.*, bent (I, where the sulfur atom is acting as a Lewis acid) with approximately tetrahedral geometry around the sulfur atom, and coplanar with the metal (II, where the sulfur acts as a σ electron donor and a π electron acceptor).

Structures of complexes with both "bent" ([Rh- $(Ph_3P)_2(CO)Cl(SO_2)$ [5], $[Ir(Ph_3P)_2(CO)Cl(SO_2)]$ [6], $[(Ph_3P)_3Pt(SO_2)][2]$, and $[(Ph_3P)_2Pt(SO_2)_2][3]$) and coplanar ($[Ru(NH_3)_4Cl(SO_2)]Cl$ [7]. ($Mn(C_5H_5)$ - $(CO)_2(SO_2)$ [8] and $[(C_5H_5)Rh(C_2H_4)(SO_2)]$ [1] $M-SO_2$ groups have been determined and correlations of the geometry with electronic, chemical and physical properties of the complexes have been attempted. In general, if the metal-SO₂ adduct exhibits the "bent" geometry, the S=O infrared stretching frequencies occur near 1200 and 1050 cm⁻¹, the SO₂ is labile, and complexes containing coordinated sulfate are formed on exposure to O_2 . On the other hand if the metal-SO₂ groups are coplanar, the S=O stretching frequencies appear near 1300 and 1100 cm⁻¹, the SO₂ group is not labile and sulfates are not formed upon air oxidation [9]. However, there are some exceptions to the above generalization; for example, Sacconi et al. [10] found the M-SO₂ group of Ni(CH₃C(CH₂PPh₂)₃)SO₂ to be planar, but the S=O stretching frequencies occur at 1190, 1055 and 1045 cm^{-1} and the compound is air sensitive.

A yellow-green rhodium-sulfur dioxide adduct prepared by this group [11, 12], Rh(ttp)Cl·SO₂, has ν_{SO} at 1155 and 1030 cm⁻¹, which is consistent with a bent geometry for the Rh-SO₂ moiety and provides a direct analogy to the known structure of $Rh(PPh_3)_2(CO)Cl(SO_2)$ [5]. The Rh(ttp)- $Cl \cdot SO_2$ compound appeared unusual, however, since the SO₂ group was not labile and it did not react upon exposure to molecular O₂ at ambient conditions [13].

In order to determine which factors influence the reactivity of a bonded SO₂ group we have prepared a series of rhodium-SO₂ adducts of the type: $RhLX \cdot SO_2$ and $[RhLL'(SO_2)] Y$ (where L is a linear triphosphine, X is a coordinated anion, L' is a neutral ligand and Y is a noncoordinated anion). By varying X and L' we can increase or decrease the basicity at the rhodium center and determine how this influences the reactivity of the bonded SO_2 . The choice of L influences not only the basicity at rhodium but it also controls the geometry around the rhodium atom. In addition, the linear triphosphine ligand ttp readily facilitates the use of phosphorus-31 NMR to "measure" the trans influence of the ligand trans to P_1 [14]. In this work we have used the ${}^1J_{P_1-Rh}$ values to ascertain that the ligand opposite P_1 in the parent compound is still opposite P_1 in the SO₂ adduct. For example, the first three compounds listed in the Table have ${}^{1}J_{P_1-Rh}$ values of 147.5, 138.7 and 113.8 Hz, respectively. The parent compounds Rh(ttp)Cl, Rh(ttp)N₃ and Rh(ttp)CN have ¹J_{P,-Rh} values of 162.5, 152.8 and 122.6 Hz, respectively, which is the same trend as their SO₂ adducts and suggests similar geometries and relative placement of atoms in the basal plane of the two series of compounds [15].

Three logical geometries can be proposed for these compounds, i.e., III, IV and V. Structures III and V are very nearly the same, the degree of distortion at the P_2 -Rh- P_2 bond angle being the distinguishing feature. At the outset of this investigation, the square-pyramidal structure III appeared most likely to be the structure, by analogy with [Rh(ttp)Cl(NO)]-PF₆ and with [Rh(Ph₃P)₂(CO)Cl(SO₂)]. However, if the steric requirements of ttp are sufficiently large compared to Ph₃P and CO, some distortion around the P_2 -Rh- P_2 bond angle could lead to structure V. An expansion of the S-Rh-X (or L') bond angle would result in structure IV. The phosphorus-31 data does not exclude any of these geometries and X-ray structural data is needed for the final assignment of structure.

The antisymmetric and symmetric S=O stretching frequencies for these compounds are reported in the

^{*}Proctor and Gamble Fellow (1976-1977).

TABLE. Spectral Data on the Sulfur Dioxide Complexes.

Compound	SO ₂		δP ₁	δΡ2	$\delta P_3 J_{P_1 - P_2}$	$J_{\mathbf{P}_1 - \mathbf{P}_3}$	J _{P2} -P,	J _{P1} -Rh	J _{P2} -Rh J _{P3} -Rh
	v_{asym}	v _{sym}	Phu	Pbu	ppm nz	112	112		
$Rh(ttp)Cl \cdot SO_2^a$	1155	1033	15.5	-2.5	- 39.3	_	_	147.5	113.8
$Rh(ttp)N_3 \cdot SO_2$	1152	1023	-13.1	-2.9	- 41.6	_	_	138.7	116.7 –
$Rh(ttp)CN \cdot SO_2$	1154	1030	0.1	-5.7	- 43.0	-		113.8	117.2 –
[Rh(ttp)(CH ₃ CN)(SO ₂)]PF ₆	1180	1038	-12.7	-2.1	- 39.5	_	_	145.6	111.0 -
$[Rh(ttp)(PPhMe_2)(SO_2)]AsF_6^{b}$	1167	1028	14.1	-0.0	22.9 47.6	242.0	33.1	111.1	116.7 110.3
$[Rh(ttp)(PEt_3)(SO_2)] AsF_6^{c}$	1178	1033	16.0	-0.9	13.1 47.9	~240	30.6	109.4	119.1 105.7
$[Rh(ttp)(CO)(SO_2)]$ AsF ₆	1225	1063	11.3	-3.7	- 47.2		-	113.6	113.6 -
	(1210)								
$a_{ttp} = PhP(CH_2CH_2CH_2PPh_2)_2$	b	Monor	hosphin	e-P.	^c Due to the	e verv low	intensity o	of several pe	eaks, this spectrum

1 2 3

has not been fully simulated and $J_{P_1}-P_1$ is accurate only to two significant figures.

Table; all of the values are similar and in the range generally found for the "bent" arrangement in SO₂ complexes. The carbonyl complex [Rh(ttp)(CO)-(SO₂)] AsF₆ has ν_{SO} absorptions (at 1225 and 1063 cm⁻¹) somewhat higher than those of the other compounds, and this can be attributed to the apparent reduced basicity of rhodium in this case due to the π -acceptor nature of CO.

Although the chemical properties of these SO₂ complexes have not been studied thoroughly yet, a major difference in reactivity toward oxygen has been noted. For example, Rh(ttp)Cl·SO₂ is unreactive at 25 °C both in the solid state and in solution [12, 13], whereas [Rh(ttp)(CH₃CN)(SO₂)] PF₆ shows significant reaction with O₂ in the solid state after one month; in solution the reaction is complete after only a few moments' exposure. These compounds appear to have reasonably non-labile SO₂ groups since both may be recrystallized or heated *in vacuo* (0.1 torr, 57 °C) for 18 h without loss of SO₂. On the other hand, both [Rh(ttp)(PEt₃)(SO₂)]-AsF₆ and [Rh(ttp)(CO)(SO₂)] AsF₆ lose SO₂ readily when refluxed in methanol if a positive pressure of SO₂ is not maintained.

Both $[Rh(ttp)(PEt_3)(SO_2)]AsF_6$ and $[Rh(ttp)(PPhMe_2)(SO_2)]AsF_6$ exhibit a surprising lability of the monophosphine ligands. At room temperature, an acetone solution of either compound is yellow (the compounds are orange in the solid state and in solution at lower temperatures) and the ³¹P NMR spectra indicate that the rhodium compound present has ttp as the only phosphine ligand. The ³¹P NMR parameters of this species are very similar to those of $[Rh(ttp)(CH_3CN)(SO_2)]PF_6$ but it is not known whether the species is five coordinate, $[Rh(ttp)-(acetone)(SO_2)]AsF_6$ or only four coordinate $[Rh-(ttp)(SO_2)]AsF_6$. If the temperature is lowered to 223 °K the predominant pattern in the NMR is that due to $[Rh(ttp)(PEt_3)(SO_2)]^+$ or $[Rh(ttp)(PPhMe_2)$ - (SO_2) ⁺, respectively, although the first pattern is still present to some extent. As long as the solution is not heated or flushed with N₂ the SO₂ remains coordinated.

We are presently obtaining crystal structure determinations on several of these compounds. We shall report these results along with a more extensive discussion of experimental details and results in a subsequent paper. In addition, we shall report the differences in O_2 sensitivity observed for Rh-SO₂ complexes of other triphosphine ligands.

- 1 R. R. Ryan, P. G. Eller and G. J. Kubas, *Inorg. Chem.*, 15, 797 (1976).
- 2 P. G. Eller, R. R. Ryan and D. C. Moody, *Inorg. Chem.*, 15, 2442 (1976).
- 3 D. C. Moody and R. R. Ryan, Inorg. Chem., 15, 1823 (1976).
- 4 D. C. Moody and R. R. Ryan, Chem. Commun., (1977).
- 5 K. W. Muir and J. A. Ibers, Inorg. Chem., 8, 1921 (1969).
- 6 J. LaPlaca and J. A. Ibers, Inorg. Chem., 5, 405 (1966).
- 7 L. H. Vogt, Jr., J. L. Katz and S. E. Wiberley, *Inorg. Chem.*, 4, 1157 (1965).
- 8 C. Barbeau and R. J. Dubey, Can. J. Chem., 51, 3684 (1973).
- 9 G. J. Kubas, Abstracts 172nd National Amer. Chem. Soc. Meeting, San Francisco, Calif., No. 240, September 3 (1976).
- 10 P. Dapporto, S. Midollini, A. Orlandine and L. Sacconi, Inorg. Chem., 15, 2768 (1976).
- 11 T. E. Nappier, Jr., and D. W. Meek, J. Am. Chem. Soc., 94, 306 (1972).
- 12 T. E. Nappier, Jr., D. W. Meek, R. M. Kirchner and J. A. Ibers, J. Am. Chem. Soc., 95, 4194 (1973).
- 13 In the solid state it is stable towards O_2 indefinitely. In solution it was exposed to O_2 for more than 1 hr at one atmospheric O_2 pressure with no evidence of a chemical reaction.
- 14 P. R. Blum and D. W. Meek, unpublished data (1977).
- 15 D. W. Meek, D. L. DuBois and J. A. Tiethof, Adv. in Chem. Ser., 150, 335 (1976).
- 16 P. S. Braterman, R. J. Cross, L. Manojlovic-Muir, K. W. Muir and G. B. Young, J. Organomet. Chem., 84, C40 (1975).