# Mechanism of Reaction of Iron(III) with Phenolic Derivatives

U. D. GOMWALK<sup>a</sup>, A. G. LAPPIN<sup>b</sup>, J. P. McCANN and A. McAULEY<sup>c</sup> Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland, U.K. Received November 17, 1976

The complex formation reactions between iron(III) and four phenolic derivatives, salicylamide (A), salicylaldehyde (B), 2-hydroxyacetophenone (C) and 2-(hydroxymethyl)phenol (D), have been investigated using the stopped flow technique. For the ligands (A), (B), (C), the mechanism involves the reaction of the protonated ligands with both Fe<sup>3+</sup> and  $FeOH^{2^+}$  (second order rate constants at T = 25 °C,  $I = 1.0M (LiClO_4)$  are  $Fe^{3^+} + (A), (B), (C) 14.5, 2.6,$ and 3.0  $M^{-1}$  s<sup>-1</sup> respectively and FeOH<sup>2+</sup> + (A), (B), (C) 2900, 1370, and 1840  $M^{-1} s^{-1}$ ). For (D), only the reaction of FeOH<sup>2+</sup> with the ligand is observed  $(FeOH^{2+} + (D) \ 1000 \ M^{-1} \ s^{-1})$ . Thermodynamic parameters have been evaluated and the data are compared with other systems of this type. The complexation mechanism is considered to involve some degree of associative character.

### Introduction

The kinetics and mechanisms of complex formation reactions of iron(III) in aqueous acidic media have been studied extensively [1-4]. There are, however, relatively few data pertaining to the hexaaquo ion,  $Fe(H_2O)_6^{3+}$ , owing to the greater reactivity of the first hydrolysis product (H<sub>2</sub>O)<sub>5</sub>FeOH<sup>2+</sup>. In the light of recent evidence on the associative-dissociative character of trivalent ions [5-7], more information on the hexa-aquo ion is desirable. A second area of interest is an extension of studies to include ligands of high basicity such as phenolic derivatives. Previous attempts to evaluate rate parameters for the reactions between  $Fe(H_2O)_6^{3+}$  and these basic monodentate ligands have been unsuccessful [8–10] in all cases except for phenol itself [4]. Instead the reaction pathway involves the FeOH<sup>2+</sup> ion and this has led to the proposal [9] that these reactions involve initial proton transfer from the phenolic residue to the hydroxy-metal ion in an outer-sphere complex followed by inner-sphere—outer-sphere interchange characteristic of the hexa-aquo ion.

In this study, the reactions of iron(III) with salicylaldehyde, salicylamide, 2-hydroxyacetophenone and 2-hydroxymethylphenol have been examined. These phenolic derivatives have differing functional groups adjacent to the hydroxy residue



 $X = H, NH_2, Me, (OH)$ 

and are capable of forming chelate complexes as is apparent from their enhanced thermodynamic stabilities [11] over monodentate phenols of comparable basicity. Previous studies of the reactions of iron(III) with salicylaldehyde [12] and the related salicylic acid [13] have been reported and in both these systems complex formation pathways *via*  $Fe(H_2O)_{6}^{3^{+}}$  and  $FeOH^{2^{+}}$  have been identified.

The mechanistic interpretation is complicated by the possibility of chelate ring closure playing a role in the determining step. It has been found, however, with a great number of ligands [14-16] that the replacement of the first co-ordinated water molecule is generally slower than the subsequent substitution of the remaining donor atoms on the ligand. Such is the situation obtaining in the reactions of *o*-aminophenol where a single relaxation signal is observed [4]. Comparison is also possible with the relevant data for phenol which are also available.

## Experimental

Stock solutions of iron(III) perchlorate, sodium perchlorate and perchloric acid were prepared and determined as described previously [17]. Lithium perchlorate was prepared by the slow addition of  $Li_2CO_3$  -(Hoptkin and Williams) to HClO<sub>4</sub> solutions at 70 °C. After recrystallization (three times) from

<sup>&</sup>lt;sup>a</sup>Present address: Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria. <sup>b</sup>Present address: Department of Chemistry, Purdue Univer-

Present address: Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, U.S.A.

<sup>&</sup>lt;sup>c</sup>Author to whom correspondence should be addressed at: Department of Chemistry, University of Victoria, Victoria, B.C., V8W 2Y2, Canada.

| Ligand                      | λ <sub>max</sub><br>(nm) | $(M^{-1} \text{ cm}^{-1})$ | K <sub>1</sub>                                                       | Τ°C                          | Ka <sup>a</sup>               |
|-----------------------------|--------------------------|----------------------------|----------------------------------------------------------------------|------------------------------|-------------------------------|
| Salicylamide                | 525                      | 1500 <sup>a</sup>          | $13.9 \pm 2 \\ 15.1 \pm 1 \\ 15.1 \pm 1 \\ 16.5 \pm 2$               | 15.4<br>20.4<br>25.0<br>35.3 | 1.25 × 10 <sup>-9</sup>       |
| 2-Hydroxyacetophenone       | 530                      | 1300 <sup>a</sup>          | $0.49 \pm 0.1$<br>$0.55 \pm 0.1$<br>$0.65 \pm 0.1$<br>$0.75 \pm 0.1$ | 10.0<br>15.0<br>20.0<br>25.0 | $1.58 \times 10^{-11}$        |
| Salicylaldehyde             | 550                      | 1200 <sup>a</sup>          | $0.92 \pm 0.02$<br>1.13 ± 0.03                                       | 12.3<br>25.0                 | <b>1.6</b> × 10 <sup>-9</sup> |
| Salicylic acid <sup>b</sup> | 530                      | 1620                       | 7.4                                                                  | 25.0                         |                               |
| 2-(Hydroxymethyl)phenol     | 560                      | 2000 ± 500 <sup>°</sup>    | 0.03<br>0.03<br>0.042<br>0.045                                       | 10.0<br>15.0<br>20.0<br>25.0 |                               |
| Phenol <sup>b</sup>         | 556                      | 1950                       | 0.017                                                                | 25.0                         |                               |

TABLE I. Absorption Maxima, Molar Extinction Coefficients, and Equilibrium Constants for Complexes between Iron(III) and Phenolic Substrates, I = 1.0M.

<sup>a</sup>Ref. 11. <sup>b</sup>Z. L. Ernst and F. G. Herring, *Trans. Farad. Soc.*, 59, 2838 (1963); 61, 454 (1965). <sup>c</sup>See text.

water a stock solution was standardized by hydrogen ion exchange methods and titration against 0.1M NaOH.

Salicylaldehyde (Hopkin & Williams) and 2hydroxyacetophenone (Koch-Light) were re-distilled under vacuum. 2-(hydroxymethyl)phenol (Koch-Light) was twice recrystallized from ether to yield white platelets. Salicylamide (B.D.H.) recrystallized from ethanol. In all cases elemental analyses and melting points indicated a purity greater than 99.7%. Stock solutions were prepared daily by dissolving appropriate samples in the required amounts of HClO<sub>4</sub>/ClO<sub>4</sub> solutions. Kinetic measurements were made using a stopped-flow spectrophotometer employing procedures described earlier [18]. Temperature control within the flow system was to better than ±0.1 °C. Solutions were prepared using 1.0M LiClO<sub>4</sub> as a background electrolyte. Several experiments were repeated with NaClO<sub>4</sub> and no significant medium effects were noted. Reactions were monitored at the wavelength maxima of the various complexes shown in Table I. Pseudo first order conditions were maintained with an excess of metal ion to avoid complications arising from formation of bis-complexes and first-order kinetic behaviour to greater than 90% reaction was normally observed.

## **Results and Discussion**

In the conditions of acidity used in this study,  $([H^{\dagger}] > 0.20M)$  the major reactant species in solution

are  $Fe(H_2O)_6^{3^+}$  and the protonated forms of the ligand HL. Optimum conditions for the formation of 1:1 complexes were achieved using an excess of metal ion and overall equilibrium absorbance measurements are consistent with equation (1)

$$Fe^{3^+} + HL \longrightarrow FeL^{2^+} + H^+ \quad (K_1)$$
 (1)

in which a single proton is released on complex formation (water molecules have been omitted for convenience). Final absorbance values  $A_{\infty}$  were found to be directly proportional to [Fe(III)]total, and measurements of the graphical type used by Benesi and Hildebrand [19] were thus unsuitable for the evaluation of  $K_1$ . Using the extinction coefficients of Agren [11], however, equilibrium constants were evaluated from a knowledge of  $[FeL^{2+}]$  (=  $A_{\alpha}/\epsilon l$ ) where l = 0.5 cm. In the case of the hydroxymethylphenol  $\epsilon = 2 \pm 0.5 \times 10^3 M^{-1} \text{ cm}^{-1}$  was estimated from the data and from a consideration of values for similar phenolic ligands. Data for extinction coefficients and equilibrium constants are shown in Table I. Although trends in  $K_1$  with temperature are discernible the spread of values is small and  $(\Delta H_f^{\circ})$ consequently has a low value. Since  $\Delta G^{\circ}$  is approximately zero so also is  $\Delta S_f^{\circ}$ . The K<sub>1</sub> values are in good agreement with those reported previously [11] at conditions of higher ionic strength. Of interest is the higher stability constant of salicylamide compared to the other substrates even though it has a basicity comparable to salicylaldehyde. This has been attributed [20] to greater resonance stabilization of the chelate ring.

TABLE II. Kinetic, Spectrophotometric and Equilibrium Data for the Reactions with Iron(III), T = 25.0 °C, I = 1.0M LiClO<sub>4</sub>.

| [H <sup>+</sup> ]/ <i>M</i> | 10 <sup>3</sup> [Fe(III)]/M    | 10 <sup>3</sup> [A] | $k_{obs}/s^{-1}$ | 10 <sup>2</sup> A <sub>∞</sub> <sup>a</sup> |
|-----------------------------|--------------------------------|---------------------|------------------|---------------------------------------------|
| 2-Hydrox                    | vacetophenone (C) <sup>c</sup> | :                   |                  |                                             |
| 0.300                       | 14.58                          | 2.40                | 5.02             | 2.38                                        |
|                             | 29.17                          |                     | 5.00             | 4.63                                        |
|                             | 43.75                          |                     | 5.23             | 6.88                                        |
|                             | 58.33                          |                     | 5.42             | 8.65                                        |
| 0.400                       | 12.50                          | 2.96                | 4.90             | 1.92                                        |
|                             | 25.00                          |                     | 5.17             | 3.80                                        |
|                             | 37.50                          |                     | 5.21             | 5.40                                        |
|                             | 50.00                          |                     | 5.38             | 7.15                                        |
| Salicylam                   | ide (A)                        |                     |                  |                                             |
| 0.250                       | 6.864                          | 0.881               | 0.528            |                                             |
|                             | 11.44                          |                     | 0.642            |                                             |
|                             | 16.02                          |                     | 0.752            |                                             |
|                             | 22.88                          |                     | 0.901            |                                             |
| 0.350                       | 6.864                          | 1.065               | 0.503            | 15.20                                       |
|                             | 11.44                          |                     | 0.584            | 22.0                                        |
|                             | 16.02                          |                     | 0.686            | 28.0                                        |
|                             | 22.8                           |                     | 0.808            | 33.5                                        |
| 0.400                       | 5.49                           | 1.426 <sup>b</sup>  | 0.529            | 15.1                                        |
|                             | 7.32                           |                     | 0.572            | 19.0                                        |
|                             | 10. <b>98</b>                  |                     | 0.611            | 26.8                                        |
|                             | 18.30                          |                     | 0.710            | 37.2                                        |
|                             | 21.96                          |                     | 0.774            | 41.7                                        |
| 0.550                       | 6.864                          | 1.175               | 0.568            | 10.8                                        |
|                             | 11.44                          |                     | 0.617            | 17.0                                        |
|                             | 16.02                          |                     | 0.662            | 23.2                                        |
|                             | 22.88                          |                     | 0.772            | 28.5                                        |
|                             | 5.49                           | 1.234 <sup>b</sup>  | 0.577            | 9.35                                        |
|                             | 7.32                           |                     | 0.532            | 12.0                                        |
|                             | 10.98                          |                     | 0.606            | 16.6                                        |
|                             | 14.64                          |                     | 0.691            | 20.8                                        |
|                             | 18.30                          |                     | 0.711            | 24.6                                        |
|                             | 21.96                          |                     | 0.768            | 26.9                                        |
| Salicylald                  | ehvde (R)                      |                     |                  |                                             |
| 0.300                       | 2.821                          | 2.828               | 2.76             | 1 91                                        |
| 0.500                       | 4 937                          | 2.020               | 2.70             | 3 36                                        |
|                             | 7.053                          |                     | 2.85             | 4 01                                        |
|                             | 8 463                          |                     | 2.80             | 5 75                                        |
|                             | 14.11                          |                     | 2.87             | 9.96                                        |
| 0.350                       | 4.94                           | 2.970               | 2.85             | 2.66                                        |
|                             | 11.28                          |                     | 2.96             | 5.87                                        |
|                             | 14.11                          |                     | 2.93             | 6.87                                        |
| 0.400                       | 9.152                          | 6.234               | 3.08             | 9.80                                        |
|                             | 18.30                          |                     | 3.19             | 19.60                                       |
|                             | 27.46                          |                     | 3.18             | 29.60                                       |
|                             | 45.76                          |                     | 3.31             | 47.5                                        |
| 0.500                       | 6.86                           | 4.934               | 3.24             | 4.33                                        |
|                             | 9.15                           |                     | 3.22             | 5.74                                        |
|                             | 11.44                          |                     | 3.22             | 7.24                                        |
| 0.600                       | 4.576                          | 4.934               | 3.39             | 4.94                                        |
|                             | 13.73                          |                     | 3.45             | 7.04                                        |
|                             | 22.88                          |                     | 3.53             | 12.1                                        |

| [H <sup>+</sup> ]/M | 10 <sup>3</sup> [Fe(III)]/M                | 10 <sup>3</sup> [A] | k <sub>obs</sub> /s <sup>-1</sup> | 10 <sup>2</sup> A <sub>∞</sub> <sup>a</sup> |
|---------------------|--------------------------------------------|---------------------|-----------------------------------|---------------------------------------------|
| 2-(hydrox           | (D (c) | )c                  |                                   |                                             |
| 0.30                | 29.17                                      | 6.14                | 35.2                              | 1.72                                        |
|                     | 43.75                                      |                     | 36.7                              | 1.20                                        |
|                     | 58.33                                      |                     | 36.5                              | 2.27                                        |
| 0.40                | 25.0                                       | 5.90                | 33.7                              | 0.68                                        |
|                     | 37.5                                       |                     | 36.7                              | 0.91                                        |
|                     | 50.0                                       |                     | 39.3                              | 1.35                                        |
| 0.50                | 31.25                                      | 6.04                | 33.8                              | 0.67                                        |
|                     | 41.67                                      |                     | 36.5                              | 0.87                                        |
| 0.60                | 33.33                                      | 6.01                | 37.0                              | 0.64                                        |

<sup>a</sup>Absorbance of reactant solution at equilibrium, optical pathlength 0.50 cm. <sup>b</sup>NaClO<sub>4</sub> as supporting electrolyte. <sup>c</sup>Optical pathlength 0.20 cm.

By analogy with reactions of other substrates with iron(III), equilibrium (1) may be attained by four possible pathways (2)-(5):

$$Fe^{3^+} + HL \xrightarrow{k_1}_{k_1} FeL^{2^+} + H^+$$
 (2)

$$H^{+} + Fe^{3+} + L^{-} \xrightarrow{k_{3}} FeL^{2+} + H^{+}$$
 (3)

$$H^{+} + FeOH^{2+} + HL \xrightarrow{k_5}_{k_6} FeL^{2+} + H^{+}$$
 (4)

$$2H^{+} + FeOH^{2+} + L^{-} \underbrace{\frac{k_7}{k_8}}_{k_8} FeL^{2+} + H^{+}$$
 (5)

It should be noted that as written these are composite reactions possibly involving a chelation process. If the initial replacement of the coordinated water molecule of the metal ion is rate controlling, however, *i.e.* ring closure is fast, then the observed forward rate constant  $k_1$  etc. represents the overall rate of chelate formation. This situation has been shown to obtain in the majority of the reactions of iron(III) studied to data. Taking into account the protonation equilibria

$$Fe^{3^+} \longrightarrow FeOH^{2^+} + H^+ K_h$$
 (6)

and

$$HL \Longrightarrow H^* + L^- \qquad K_a \qquad (7)$$

since  $Fe^{3^+}$  is the major iron(III) species present in solution [21] and the conditions of constant [H<sup>+</sup>] prevail ([H<sup>+</sup>] > 0.2*M*) the rate expression (8) may be derived

$$d[FeL^{2^{+}}]/_{dt} = \{k_{\alpha}[Fe^{3^{+}}]_{tot} + k_{\beta}\}$$

$$([FeL^{2^{+}}]_{*} - [FeL^{2^{+}}]_{t}$$
(8)

where

| Ligand                      | T ℃  |                          | k <sub>1</sub> <sup>a</sup> | $10^{-3} k_s^a$ |
|-----------------------------|------|--------------------------|-----------------------------|-----------------|
| Salicylamide                | 15.4 |                          | 6 ± 1                       | 2.1 ± 0.3       |
|                             | 20.4 |                          | 9 ± 1                       | $3.2 \pm 0.3$   |
|                             | 25.0 |                          | 14.5 ± 1                    | 2.9 ± 0.3       |
|                             | 35.3 |                          | 40 ± 10                     | 5.0 ± 0.5       |
|                             |      | ∆H. <sup>≢b</sup>        | $17.3 \pm 2$                | 7.5 ± 2         |
|                             |      | $\Delta S^{\dagger c}$   | 6 ± 4                       | -19 ± 4         |
| Salicylaldehyde             | 12.3 |                          | $0.5 \pm 0.1$               | 0.76 ± 0.05     |
|                             | 25.0 |                          | $2.6 \pm 0.3$               | $1.37 \pm 0.08$ |
|                             |      | (∆H <sup>∓D</sup>        | $22.1 \pm 5$                | 7.5 ± 3)        |
|                             |      | $(\Delta S^{\dagger c})$ | 11 ± 4                      | $-18 \pm 4$ )   |
| 2-Hydroxyacetophenone       | 10.0 |                          | $0.42 \pm 0.1$              | $0.64 \pm 0.2$  |
|                             | 15.0 |                          | $0.72 \pm 0.2$              | $0.79 \pm 0.3$  |
|                             | 20.0 |                          | $1.63 \pm 0.4$              | $1.33 \pm 0.4$  |
|                             | 25.0 |                          | $3.04 \pm 0.5$              | $1.84 \pm 0.5$  |
|                             |      | ΔH <sup>‡b</sup>         | $22.1 \pm 3$                | 11.8 ± 1.2      |
|                             |      | $\Delta S^{\pm c}$       | 18 ± 4                      | -4 ± 4          |
| 2-(Hydroxymethyl)phenol     | 10.0 |                          |                             | $0.50 \pm 0.3$  |
|                             | 15.0 |                          |                             | $0.60 \pm 0.3$  |
|                             | 20.0 |                          |                             | $0.85 \pm 0.4$  |
|                             | 25.0 | 11                       |                             | $1.00 \pm 0.4$  |
|                             |      | ΔH <sup>±D</sup>         | _                           | $7.32 \pm 2$    |
|                             |      | $\Delta S^{\mp c}$       | -                           | $-20 \pm 6$     |
| Salicylic Acid <sup>d</sup> | 25.0 |                          | 3.0                         | 5.5             |
| $\Delta H^{+b}$             |      |                          | -                           | 12              |
| $\Delta S^{\dagger c}$      |      |                          | -                           | -2              |

<sup>a</sup>Units are  $M^{-1}$  s<sup>-1</sup>. <sup>b</sup>Kcal/mol. <sup>c</sup>Cal/deg/mol. <sup>d</sup>Ref. 13.

# TABLE IV. Rate Constants<sup>a</sup> for Reactions of Fe<sup>3+</sup> and FeOH<sup>2+</sup>.

| Ligand                       | $k_1(M^{-1} s^{-1})$ | $10^4 k_3 (M^{-1} s^{-1})$ |
|------------------------------|----------------------|----------------------------|
| Salicylamide                 | 14.5                 | 0.29                       |
| Salicylaldehde               | 2.6                  | 0.137                      |
| 2-(Hydroxyacetophenone       | 3.0                  | 0.18                       |
| Salicylic Acid               | 3.0                  | 0.55                       |
| Phenol                       | 25                   | 0.072                      |
| o-Amino-phenol               |                      | 11.0                       |
| 2-(Hydroxymethyl)phenol      |                      | 0.10                       |
| m-Nitrophenol                | -                    | 0.06                       |
| o-Hydroxyphenol <sup>b</sup> | -                    | 0.31                       |
| CI <sup>-c</sup>             | 9.4                  | _                          |
| NCS <sup>-d</sup>            | 127                  | _                          |

<sup>a</sup>Data are at T = 25 °C, various ionic strengths. <sup>b</sup>Ref. 25. <sup>c</sup>R. E. Connick and C. P. Coppel, J. Am. Chem. Soc., 81, 6389 (1959). <sup>d</sup>H. Wendt and H. Strehlow, Z. Elektrochem., 66, 228 (1962).

$$k_{\alpha} = k_{1} + k_{3}K_{a}/[H^{\dagger}] + k_{5}K_{h}/[H^{\dagger}] + k_{7}K_{a}K_{h}/[H^{\dagger}]^{2}$$
(9)

and

$$k_{\beta} = \frac{1}{K_{1}} \{k_{1} [H^{\dagger}] + k_{3}K_{a} + k_{5}K_{h} + k_{7}K_{a}K_{h} / [H^{\dagger}]\}$$
(10)

Plots of  $k_{obs} = (k_{\alpha}[Fe(III)]_{tot} + k_{\beta})$  against [Fe(III)]<sub>tot</sub> should be linear (equation 8). Only in the case of salicylamide where the equilibrium constant is sufficiently large were the slopes of such plots  $(k_{\alpha})$  great enough compared to experimental error to give values which could be plotted meaningfully against  $[H^{+}]^{-1}$ . In other cases, values of  $k_{obs}$  did not vary

markedly with [Fe(III)]tot. Representative data at 25 °C are presented in Table II and those at other temperatures may be found in thesis form elsewhere [21]. In all cases, however, the intercepts  $k_{\beta}$  when plotted against [H] (Equation (10)) yielded straight lines with gradients  $k_1/K_1$  and intercepts  $\{k_3K_a +$  $k_5K_h$  /K<sub>1</sub>. The slopes of these plots may thus be related unambiguously to the rate constant  $k_1$  for the reaction of  $Fe(H_2O)_6^{3+}$  with the protonated form of the ligand. The lack of any term in  $[H^{+}]^{-1}$  in the hydrogen ion correlation of  $k_{\beta}$  is consistent with the absence of any reaction pathway (5) involving  $FeOH^{2+}$  and L<sup>-</sup>. This situation is similar to that in other reaction systems of this type where the rate constant would exceed that of the diffusion controlled limit. Using  $K_1$  the rate parameters  $k_1$  and  $\{k_3K_a + k_5K_h\}$  were evaluated and as has been found for other systems, where ligands of high basicity are involved [4, 23], interpretation of the composite constant in terms solely of k<sub>3</sub>K<sub>a</sub> leads to a forward rate for (3) which is close to or exceeds the diffusion controlled limit. The constant is therefore considered to correspond principally to k<sub>5</sub>K<sub>h</sub>. Rate constants evaluated at various temperatures and related thermodynamic parameters are presented in Table III.

In the case of three of the four systems under investigation there is clear evidence in the mechanism for the  $Fe_{aq}^{3+}$  pathway as well as that involving the hydroxo complex. For the (2-hydroxymethyl)phenol, however, both initial rate data and overall reaction constants are consistent with only the FeOH2+ ion reacting. In this way these derivatives may be compared to salicylic acid [13] and phenol [4] where both ions are reactive and to o-aminophenol [4] where again only  $FeOH^{2+}$  contributes to reaction. As expected, in no case yet studied is there evidence for only the  $Fe_{aq}^{3+}$  as the reactant.

In the formation of a metal ion complex the initial step is considered to be an ion pairing,

$$M + L \longrightarrow M, L \quad K_{os}$$

followed by the rate-determining loss of a water molecule from the complexed metal centre to give an inner sphere species. The magnitude of the overall rate constant  $k = k_{ex} \cdot K_{os}$  depends on both the outer sphere association constant and the rate of water exchange kex. It is generally considered that factors involving  $K_{\rm os}$  are charge and the effects of solvation on ligand L. Since all the substrates in the present study have a similar charge, the most important factor ought to be ligand solvation. In an Id mechanism, kex does not change significantly with the same metal ion and ligands of similar structure. Differences should therefore appear as variations in the in K<sub>os</sub> observed rate constants. For the hexa-aquo ion, the rates and thermodynamic parameters for the reactions with 2-hydroxyacetophenone and salicylaldehyde are comparable in magnitude to those for salicylic acid. The high rate constant for salicylamide cannot readily be explained by changes in outer-sphere association. Although a mechanism involving ring closure in the rate determining step cannot be ruled out (phenol<sup>4</sup> itself reacts with  $k_{obs} =$  $25 M^{-1} s^{-1}$ ) the trend in rate constants is consistent with the nucleophilic properties of the non-phenolic substituent and parallels the overall trend in complex stabilities. For the trivalent metal ions there is support for an  $I_a$  mechanism in which an element of bond making occurs within the outer-sphere complex. This is considered to be the case in the reactions of Mo(III) [24] and there is growing evidence that Co(III) may be the exception among M(III) species in undergoing anation by an  $I_d$  process [5]. The present data supplemented by those for other phenols are presented in Table IV where a slight spread of values for both the  $Fe_{aq}^{3+}$  and the  $FeOH^{2+}$  pathways is discernible There is no obvious correlation of the rate constants with the basicity of the ligands and it may be that the associative interchange mechanism although operating is less well defined than for other ter-valent metal ions. The influence of ionic radius may be a factor and a study of pressure effects and activation volumes [5] on these systems could well provide additional information.

### Acknowledgements

We thank the University of Glasgow for the award of a demonstratorship (to J. P. McC), the Carnegie Trust for Scotland for an award (A.G.L.), the British Council for a Fellowship (to U.D.G.). Miss Linda McKechnie is thanked for technical assistance. Support from the Science Research Council and the Royal Society are acknowledged.

#### References

- 1 F. Accassina. F, P. Cavasino and S. D'Alessandro, J. Phys. Chem., 71, 2474 (1967).
- D. Seewald and N. Sutin, Inorg. Chem., 2, 643 (1963).
- 3 A. D. Gilmour and A. McAuley, J. Chem. Soc. A, 2345 (1969).
- 4 S. Gouger and J. Steuhr, Inorg. Chem., 13, 379 (1974).
- 5 T. W. Swaddle, Coord. Chem. Rev., 14, 217 (1974). 6 H. Diebler, Proceedings XVI I.C.C.C. Dublin, paper S13
- (1974).
- 7 B. B. Hasinoff, Can. J. Chem., 54, 1820 (1976).
- 8 F. P. Cavasino and E. Di Dio, J. Chem. Soc. A, 1151 (1970).
- 9 K. Nakamura, T. Tsuchida, A. Yamagishi and M. Fujimoto, Bull. Chem. Soc. Japan, 46, 456 (1973).
- 10 K. Tamura, Bull. Chem. Soc. Japan, 46, 1581 (1973). 11 A. Agren, Acta Chem. Scand., 9, 39 (1955).
- 12 P. G. T. Fogg and R. J. Hall, J. Chem. Soc. A, 1365 (1971).
- 13 G. Saini and E. Mentasti, Inorg. Chim. Acta, 4, 585 (1970).

- 14 E. B. Moorehead and N. Sutin, Inorg. Chem., 5, 1866 (1966).
- 15 F. Accassina, F. P. Cavasino and E. Di Dio, *Trans. Farad.* Soc., 65, 489 (1969).
- 16 R. G. Wilkins, "The Study of Kinetics and Mechanism of Reactions of Transition Metal Complexes", Allyn and Bacon, Boston (1974) p. 197.
- 17 A. G. Lappin and A. McAuley, J. Chem. Soc. Dalton, 1560 (1975).
- 18 A. McAuley and R. Shanker, J. Chem. Soc. Dalton, 2321 (1973).
- 19 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 71, 2703 (1949).

- 20 A. Agren, Srensk Kem Tidskr, 68, 185 (1956).
- 21 R. M. Millburn, J. Am. Chem. Soc., 79, 537 (1957).
- 22 J. P. McCann, Ph.D. Thesis, University of Glasgow (1975); A. G. Lappin, Ph.D. Thesis, University of Glasgow (1975).
- 23 D. N. Hague in "Inorganic Reaction Mechanisms", Specialist Periodical Report No. 18, Vol. 4, ed. A. McAuley, The Chemical Society, London (1976) p. 212.
- 24 Y. Sasaki and A. G. Sykes, Chem. Comm., 767 (1973); J. Chem. Soc. Dalton, 1468 (1974).
- 25 E. Mentasti and E. Pelizzetti, J. Chem. Soc. Dalton, 2605 (1973).