Bond Energy Terms in Oxides and Oxo-anions

C. GLIDEWELL

Chemistry Department, University of St. Andrews, Fife, KY16 9ST, Scotland, U.K. Received December 30, 1976

Experimental ΔH_{Φ}^{Φ} values are employed to calculate mean bond dissociation energies for homogeneous neutral gaseous oxides MO_p , $\overline{D_1}$ for dissociation into neutral atoms, and $\overline{D_2}$ for dissociation into oxide ions and cations M^{+2p} : similarly, sums of bond energy terms ΣB_1 and ΣB_2 are calculated for heterogeneous neutral oxides. By use of ΔH_{Φ}^{Φ} values for simple salts, $\overline{D_2}$ values are calculated for the oxo-anions, CO_3^{-2} , NO_3^{-1} , NO_2^{-1} , SO_4^{-2} , SO_3^{-2} , SeO_4^{-2} , SeO_3^{-2} , TeO_3^{-2} , CIO_4^{-1} , CIO_3^{-2} , CIO_2^{-1} , BrO_4^{-1} , BrO_3^{-1} , IO_4^{-1} , IO_3^{-2} , CrO_4^{-2} , MnO_4^{-2} , MnO_4^{-2} , TcO_4^{-2} and ReO_4^{-2} .

Introduction

In previous papers [1, 2], metal-ligand coordinate bond energy terms have been calculated for metal-ion complexes containing water, ammonia and 1,2-diaminoethane as ligands, together with data for a few examples of complexes containing fluoride and cyanide. In this paper, mean bond dissociation energies are calculated for the dissociation of homogeneous neutral oxo compounds MO_p into both neutral atoms $(\overline{D_1})$ and ions $(O^{-2} \text{ and } M^{+2p})$ $(\overline{D_2})$, and for the dissociation of homogeneous oxo-anions MO_q^{-x} into ions. A few data for heterogeneous neutral oxo compounds and homogeneous neutral thio compounds are also included.

Results

For a neutral gaseous oxo compound MO_p whose enthalpy of formation is ΔH_f^{θ} , we may write

$$p\overline{D}_1(M \rightarrow O) = \Delta H^{\phi}_{sub}(M) + p/2D(O_2) - \Delta H^{\phi}_{sub}(M)$$

for its dissociation into neutral atoms and

$$p\overline{D}_{2}(M-O) = p\overline{D}_{1}(M-O) + \sum_{1}^{2p} I(M) - p[E_{1}(O) + E_{2}(O)]$$

for its dissociation into ions, where $\sum_{1}^{2p} I(M)$ repre-

sents the sum of the successive ionisation energies of M, and $[E_1(O) + E_2(O)]$ the electron affinities of oxygen.

Values of $\Delta H_{f(g)}^{\phi}$ were taken largely from the JANAF tables [3], and otherwise as specifically cited. In Table I are presented the calculated values of \overline{D}_1 and \overline{D}_2 for neutral oxides: in the calculation of \overline{D}_2 , ionisation energies were taken from the compilation of Lakatos, Bohus and Medgyesi [4]. Also included in Table I are a number of values derived [5] from spectroscopic rather than thermochemical data. For heterogeneous oxo compounds containing bonds of more than one type, only a sum of bond energy terms can be derived from ΔH_f^{ϕ} : in Table II are presented values of ΣB_1 for dissociation to neutral atoms and ΣB_2 for dissociation into ions, $(M^{+2p} + O^{-2})$.

For the species in Table I, \overline{D}_2 refers to their ionisation to oxide ions and cationic M, except in the examples of HO, FO, ClO, and BrO. For HO \rightarrow H⁺ + O⁻, Δ H^{ϕ} is +1417 kJ mol⁻¹, whereas for HO \rightarrow H⁻ + O⁺, Δ H^{ϕ} is only +900 kJ mol⁻¹: similarly for FO, ClO and BrO dissociating to X⁺ + O⁻, the enthalpies are respectively +1753, +1382, and +1214 kJ mol⁻¹, greater than the enthalpies for dissociation to X⁻ + O⁺ by 558, 148, and 12 kJ mol⁻¹ respectively. For IO the dissociation to I⁻ + O⁺ has Δ H^{ϕ} of +1203 kJ mol⁻¹, 152 kJ mol⁻¹, greater than that for the dissociation to I⁺ + O⁻. Values of \overline{D}_2 for actinoid oxides cannot be calculated because the required ionisation energy data are unavailable. Temperature corrections were not applied since in many cases these are smaller than the experimental uncertainties.

For an ionic compound $(M^{+n})_m [XO_p]^{-nm}$ whose enthalpy of formation as a crystalline solid is ΔH_{f}^{ϕ} , and whose lattice energy is U, we may write

$$\begin{split} m[\Delta H^{\phi}_{sub}(M)] + \Delta H^{\phi}_{sub}(X) + p/2D(O_2) + \\ m \Sigma I(M) + \Sigma I(X) + p[E_1(O) + E_2(O)] - \\ U - \Delta H^{\phi}_f = p\overline{D}_2 \end{split}$$

where the terms ΔH_{sub}^{ϕ} represent atomisation enthalpies of M and X, and \overline{D}_2 represents the mean dissociation energy of the anion into cations of X in the oxidation state (2p-nm) and oxide ions; for example \overline{D}_2 for SO₄⁻² represents one-quarter of ΔH^{ϕ} for the TABLE I. Bond Dissociation Energies in Neutral, Homogeneous Oxo-compounds.

Compound	$\Delta H_{f(g)}^{\phi}/kJ \text{ mol}^{-1}$	$\overline{D}_{1}/kJ \text{ mol}^{-1}$	$\overline{D}_2/kJ \text{ mol}^{-1}$	Comments
(i) Hydrogen			_	
HO	+39.5	427	900 ⁿ	See text
H ₂ O	-241.8	463	1928	
(ii) Group I				
LiO	+84.1	326	704	
Li ₂ O	-166.9	369	1216	C _{2v}
Li ₂ O ₂	-242.7	266	455	D_{2h}
NaO	+83.7	275	629	
ко	+71.1	268	544	
(iii) Group II				
BeO	+129.7	452	3761	
Be ₂ O	-62.8	488	1714	Deeb
Be ₂ O ₂	-410.0	393	2048	Dap
Be ₃ O ₃	-1054	466	2121	Dah
BeaOa	-1590	489	2144	D _{4h}
BesOs	-2113	502	2157	Den
Be ₆ O ₆	-2661	512	2167	Den
MgO	+4.2	391	3232	- 011
CaO	a	431	2819	
SrO	a	464	2730	
BaO	a	527	2648	
(iv) Group III				
BO	+25.1	795	4675	
B ₂ O	+96.2	647	1774	Carr
BO	-284.5	677	-	C2V
AIO	+90.4	480	3527	Dooh
AlaO	-131.4	578	1481	C
AlO	+167	401	-	C2v
GaO	2	243	3454	
GanO	_87 9 ^b	311	1217	
InO	a	105	3137	
Tl ₂ O	+5.0 ^c	212	1128	
(v) Group IV				
CO	-110.5	1037	5164	
CO	-393.5	802	8595	
SiO	99.6	799	3815	
SiO ₂	-305.4	627	6253	
GeO	-45.2^{d}	588	3540	
SnO	a	552	3325	
РЬО	+48.0	397	3216	
(vi) Group V				
NO	+90.4	631	5542	
NOa	+33.5	468	9275	
NO ₂	+71.1	383	_	Der
PO	-6.1	589	4156	- 3 <u>h</u>
PO ₂	-297.1	564	6607	
PAOA	-1648.2	373	2641	T.
AsO	a	477	3875	• a
AsaOc	-1209.2	321	2225	т.
SbO	a	310	3591	- a
Sb ₄ O ₆	-1233 ^e	315	2141	т.
				-a

Compound	$\Delta H_{f(g)}^{\phi}/kJ \text{ mol}^{-1}$	$\overline{D}_1/kJ \text{ mol}^{-1}$	$\overline{D}_2/kJ \text{ mol}^{-1}$	Comments
(vii) Group VI				
O ₂	0.0	497	_	
03	+34.1	356	-	
SO	+6.1	481	4386	
SO ₂	-296.8	516	6756	
SO ₃	-395.7	460	10001	Dan
SeO	+39.7 ^f	416	4085	- 50
SeOa	-109.6^{g}	407	6393	
SeOa	_92 0 ^h	348	9536	Da
TeO	+170 0 ⁱ	261	2005	D _{3h}
TeO ₂	-78.5 ⁱ	384	5237	
(viii) Group VII				
	+112 4	214	1105P	See toxt
FO	+113.4	214	22209	See lexi
F ₂ 0	-18.4	213	2220	0
	+101.2	269	1234-	See text
Cl ₂ O	+87.9	201	17845	
ClO_2	+104.6	257	7178	
CIO ₃	+154.8	237	10360	
BrO	а	213	1202	See text
10	a	184	1051 ^u	See text
(ix) Group VIII				
XeO ₃	+527.3	73	8300	
XeO ₄	+642.3 ^j	88	11391	
(x) Sc Triad				
ScO	я	577	3096	
YO		674	3123	
LaO	a a	674	2972	
(vi) Ti Triad				
	. 15 7	702	2222	
10	+15.7	/02	3323	
102	-259.4	613	5661	
ZrO	+58.6	802	3381	
ZrO ₂	-286.2	698	5079	
(xii) V Triad				
vo	а	527	3245	
VO ₂	a	623	6061	
TaO ₂	а	734	5206	
(xiii) Cr Triad				
CrO	а	519	3416	
MoO	+387.0	526	3422	
MoO ₂	-13.0	587	5909	
MoO ₃	-360.7	590	8512	D _{3h}
WO	+425.1	673	3804	
WO ₂	+76.6	635	5374	
WO ₃	-292.9	629	7513	D _{3h}
(xiv) Mn Triad				
MnO	a	385	3264	
(xy) Fe Triad				
FeO	+236.8	410	3384	
RuO	+355 6k	533	3514	
RuO	+118 ok	509	5967	
Ru02	+110.0 71.4k	309	9074	
KuO3		480	87/4	
RuO ₄	-182.8	455	12268	

$0sO_2$ -251.0^1 770 5801 $0sO_3$ -104.6^1 549 8043 $0sO_4$ -342.3^1 532 10709 (xvi) Co Triad RhO $+380.7^k$ 426 3542 RhO $+380.7^k$ 439 6041 10709 (xvi) Co Triad RhO $+380.7^k$ 439 6041 IrO_2 $+227.9^k$ 477 5575 103 $+25.9^k$ 464 $1rO_3$ $+25.9^k$ 464 8230 240 240 (xvii) Ni Triad NiO a <414 <3550 240 NiO a <414 <3550 240 257 257 PiO $+334.7$ 293 3625 260 261 270 286 257 PiO $+191.5^b$ 187 3479 3591 351 3591 351 (xix) Zn Triad Z Z 268 3738 3520 3664 3738 3624 3791 3645 3738 3624 3791 3648 3738	Compound	$\Delta H_{f(g)}^{\phi}/kJ \text{ mol}^{-1}$	$\overline{D}_1/kJ \text{ mol}^{-1}$	$\overline{D}_2/kJ \text{ mol}^{-1}$	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0s02	-251.0 ¹	770	5801	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OsO3	-104.6^{1}	549	8043	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OsO4	-342.3^{1}	532	10709	
RhO $+380.7^{k}$ 426 3542 RhO2 $+175.7^{k}$ 439 6041 IrO3 425.9^{k} 477 5575 IrO3 425.9^{k} 464 8230 (xvii) Ni Triad ************************************	(xvi) Co Triad				
RhO2 +175.7k 439 6041 IrO2 +207.9k 477 5575 IrO3 +207.9k 464 8230 (xvii) Ni Triad	RhO	+380.7 ^k	426	3542	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	RhO ₂	+175.7 ^k	439	6041	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	IrO ₂	$(+207.9^{k})$	477	5575	
(+8.4 ^m)4758240(xvii) Ni Triad NiOa<414	IrO ₃	{ +25.9 ^k	464	8230	
		+8.4 ^m	475	8240	
NiOa<414<3550PdO+334.72933625PtO+428.03853694PtO2+158.24565815(xiii) Cu TriadCuO+240.63453701AgOa1343591(xix) Zn TriadZnO+191.5 ^b 1873479CdOa<368	(xvii) Ni Triad				
PdO $+334.7$ 2933625PtO $+428.0$ 3853694PtO2 $+158.2$ 4565815(xwiii) Cu Triad $\\ CuO + 240.6$ 3453701AgOa1343591(xix) Zn Triad $\\ ZnO + 191.5^{b}$ 1873479CdOa<368	NiO	а	<414	<3550	
PtO +428.0 385 3694 PtO2 +158.2 456 5815 (xviii) Cu Triad	PdO	+334.7	293	3625	
PtO2+158.24565815(xviii) Cu Triad CuO+240.63453701AgOa1343591(xix) Zn Triad ZnO+191.5 ^b 1873479CdOa<368	PtO	+428.0	385	3694	
(xviii) Cu Triad CuO $+240.6$ 345 3701 AgOa 134 3591 (xix) Zn Triad ZnO $+191.5^b$ 187 3479 CdOa <368 <3520 HgO $+41.8$ 268 3738 (xx) Lanthanoids $ -$ LaOa 674 2972 CeOa 623 3004 PrOa 594 2791 GdOa 481 2886 LuOa 414 3011 (xxi) Actinoids $ -$ ThO2a 774 See textUOa 828 $0O_2$ UOa 708	PtO ₂	+158.2	456	5815	
Cuo $+240.6$ 345 3701 AgOa 134 3591 (xix) Zn Triad ZnO $+191.5^{b}$ 187 3479 CdOa <368 <3520 HgO $+41.8$ 268 3738 (xx) Lanthanoids $Ze8$ 3738 (xx) Lanthanoids $Ze8$ 3004 LaOa 674 2972 CeOa 623 3004 PrOa 594 2791 GdOa 481 2886 LuOa 414 3011 (xxi) Actinoids $Ze82$ $Ze82$ UOa 828 UO2a 741 UO3a 708	(xviii) Cu Triad				
AgOa1343591(xix) Zn Triad ZnO $+191.5^b$ 1873479CdOa <368 <3520 HgO $+41.8$ 2683738(xx) Lanthanoids LaOa 674 2972CeOa 623 3004PrOa 594 2791GdOa 481 2886LuOa 414 3011(xxi) Actinoids UOa 774 See textUOa 828 741 UOUOa 741 5428 UO2a 741 5428 UO3a 741 54286 UO3a 741 54286 UO3a 741 54286 UO3a $741666666666666666666666666666666666666$	CuO	+240.6	345	3701	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AgO	a	134	3591	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(xix) Zn Triad				
CdOa<368<3520HgO+41.82683738(xx) LanthanoidsLaOa6742972CeOa6233004PrOa5942791GdOa4812886LuOa4143011(xxi) ActinoidsThO2a774UOa828UO2a741UO3a708	ZnO	+191.5 ^b	187	3479	
HgO+41.82683738(xx) Lanthanoids12972LaOa6742972CeOa6233004PrOa5942791GdOa4812886LuOa4143011(xxi) Actinoids ThO_2 a774ThO2a828See textUOa828 741 UOa708 708	CdO	а	<368	<3520	
$\begin{array}{c cccccccccccc} (xx) \ Lanthanoids \\ LaO & a & 674 & 2972 \\ CeO & a & 623 & 3004 \\ PrO & a & 594 & 2791 \\ GdO & a & 481 & 2886 \\ LuO & a & 414 & 3011 \\ \hline (xxi) \ Actinoids \\ ThO_2 & a & 774 & See text \\ UO & a & 828 \\ UO_2 & a & 741 \\ UO_3 & a & 708 \\ \end{array}$	HgO	+41.8	268	3738	
LaO a 674 2972 CeO a 623 3004 PrO a 594 2791 GdO a 481 2886 LuO a 414 3011 (xxi) Actinoids ThO ₂ a 774 See text UO a 828 UO ₂ a 741 UO ₃ a 708 708 708 708	(xx) Lanthanoids				
CeO a 623 3004 PrO a 594 2791 GdO a 481 2886 LuO a 414 3011 (xxi) Actinoids ThO ₂ a 774 See text UO a 828 UO ₂ a 741 UO ₃ a 708 708 708 708	LaO	а	674	2972	
PrO a 594 2791 GdO a 481 2886 LuO a 414 3011 (xxi) Actinoids	CeO	а	623	3004	
GdO a 481 2886 LuO a 414 3011 (xxi) Actinoids ThO2 a 774 See text UO a 828 UO2 a 741 UO3 a 708 708 100	PrO	а	594	2791	
LuO a 414 3011 (xxi) Actinoids	GdO	a	481	2886	
(xxi) Actinoids ThO2 a 774 See text UO a 828 1002 a 741 UO3 a 708 708 1002	LuO	a	414	3011	
ThO2 a 774 See text UO a 828 1002 <td>(xxi) Actinoids</td> <td></td> <td></td> <td></td> <td></td>	(xxi) Actinoids				
UO a 828 UO ₂ a 741 UO ₃ a 708	ThO2	а	774		See text
UO ₂ a 741 UO ₃ a 708	UQ	a	828		
UO3 a 708	UQ2	- a	741		
	UO ₃	a	708		

^aRef. 5. ^bD. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, N. B. S. Technical Note 270-3, Washington, D.C. (1968). ^cD. Cubicciotti, *High Temp. Sci.*, 1, 11 (1969). ^dW. L. Jolly and W. M. Latimer, *J. Am. Chem. Soc.*, 74, 5757 (1952). ^eRef. 6. ^fW. M. Latimer, "The Oxidation States of the Elements and their Potentials in Aqueous Solutions", Prentice-Hall, Englewood Cliffs, N.J. (1952). ^gA. Glassner, USAEC Report ANL-5750 (1958). ^hS. M. Gadzhiev, R. B. Dobrotin, and A. V. Suvorov, *Zhur. Neorg. Khim.*, 11, 2155 (1966). Vapour consists of monomer-tetramer mixture, F. C. Mijlhoff, *Rec. Trav. Chim.*, 84, 74 (1965). ⁱW. A. Dutton and W. C. Cooper, *Chem. Revs.*, 66, 657 (1966). ⁱS. R. Gunn, *J. Am. Chem. Soc.*, 87, 2290 (1965). ^kJ. H. Norman, H. G. Staley and W. E. Bell, *Advan. Chem. Ser.*, 72, 101 (1968). ¹A. B. Nikol'skii and A. N. Ryabov, *Russ. J. Inorg. Chem.*, 10, 1 (1966). ^mH. Schäfer and H. J. Heitland, *Z. Anorg. Allg. Chem.*, 304, 249 (1960). ⁿD₂ for HO \rightarrow H⁺ + O⁻, For HO \rightarrow H⁺ + O⁻, D₂ is 1417 kJ mol⁻¹. ^oD₂ for H₂O \rightarrow 2F⁺ + O⁺², \overline{D}_2 is 2231 kJ mol⁻¹. ^rFor ClO \rightarrow Cl⁺ + O⁺. For ClO \rightarrow Cl⁺ + O⁻, D₂ is 1382 kJ mol⁻¹. ^sFor Cl₂O \rightarrow 2Cl⁺ + O⁻². For Cl₂O \rightarrow 2Cl⁻ + O⁺², \overline{D}_2 is 2204 kJ mol⁻¹. ^tFor BrO \rightarrow Br⁻ + O⁺. For BrO \rightarrow Br⁺ + O⁻, D₂ is 1214 kJ mol⁻¹. ^uFor IO \rightarrow I⁺ + O⁻. For IO \rightarrow I⁺ + O⁺. For IO \rightarrow I⁺ + O⁺. For BrO \rightarrow Br⁻ + O⁺. For IO \rightarrow I⁺ + O⁺. For IO \rightarrow I⁺ + O⁺. For BrO \rightarrow Br⁻ + O⁺. For BrO \rightarrow Br⁺ + O⁻, D₂ is 1214 kJ mol⁻¹. ^uFor IO \rightarrow I⁺ + O⁻. For IO \rightarrow I⁺ + O⁺. For IO \rightarrow I⁺ +

process: $SO_{4(g)}^{-2} \rightarrow S_{(g)}^{+6} + 4O_{(g)}^{-2}$. In Table IV are set out values of \overline{D}_2 for a number of anions: atomisation energies are from Kubaschewski, Evans and Alcock [6], and lattice energies are from Yatsimirskii [7]. Enthalpies of formation are available for many more salts of some of these anions, such as sulphate-

(VI), nitrate(V) and carbonate: however, wherever possible, data employed have been restricted to Group IA metal ions, since these exhibit the least covalence in their salts [8]. Where this is not possible, because of lack of $\Delta H_{\rm f}^{\rm e}$ data, as in the examples of sulphate(IV) and selenate(IV), the variation of $\bar{\rm D}_2$

TABLE II. Bond Energy	7 Term Sums in	n Neutral Hetero	geneous Oxo-	Compounds
-----------------------	----------------	------------------	--------------	-----------

Compound	$\Delta H_{f(g)}^{\phi}/kJ \text{ mol}^{-1}$	$\Sigma B_1/kJ \text{ mol}^{-1}$	$\Sigma B_2/MJ mol^{-1}$	_
HO ₂	+20.9	694	_	C,
H ₂ O ₂	-136.1	1069	2,02 ^g	C,
B_2O_2	-456.1	2096	9.86 ^h	Dan
B_2O_3	-833.2	2721	18.45	C2v
Al_2O_2	-405.8	1547	7.46 ⁱ	C _{2h}
C ₂ O	+286.6	1389	_	C_{2v}^{2n}
C_3O_2	-93.6	2731	-	D _{2h}
N ₂ O	+82.0	1112	_	C _{2v}
N ₂ O ₃	+82.8	1609	21.24	C.
N ₂ O ₄	+9.1	1931	34.38	$\tilde{D_{2h}}$
N_2O_5	+11.3	2178	56.95	C _{2v}
P4O10	-2834.2 ^a	6657	81.40	Tď
S ₂ O	-56.5	781	_	C,
FO ₂	+12.6	564	_	C.
CIOCIO3	+209.9 ^b	1027	_	C.
Cl ₂ O ₇	+306.6 ^c	1674	85.12	C ₂
V_2O_5	đ	3033	38.02	C _{2v}
Mn ₂ O ₇	+589.4 ^e	2892	82.99	?D3d
Tc_2O_7	+975.7 ^f	3917	68.21	?D34
Re_2O_7	+1098.3 ^f	4396	63.68	C _{2v}

^aRef. 6. ^bC. J. Schack and D. Pilipovich, *Inorg. Chem.*, 9, 1387 (1970). ^c $\Delta H_{f(1)}^{\phi}$, +272.0 kJ mol⁻¹, NBS Technical Note 270-3, Washington, D.C., (1968); ΔH_{vap}^{ϕ} , +34.6 kJ mol⁻¹, C. F. Goodeve and J. Powney, *J. Chem. Soc.*, 2078 (1932). ^dRef. 5. ^e $\Delta H_{f(s)}^{\phi}$, -728.4 kJ mol⁻¹, O. Glemser and H. Schröder, *Z. Anorg. Allg. Chem.*, 271, 293 (1953): ΔH_{sub}^{ϕ} taken as +139 kJ mol⁻¹, those for Tc₂O₇ and Re₂O₇ being +137.7 kJ mol⁻¹ and +139.7 kJ mol⁻¹ respectively^a. ^f $\Delta H_{f(s)}^{\phi}$, -1113.4 kJ mol⁻¹ for Tc₂O₇ and -1238.0 kJ mol⁻¹ for Re₂O₇, J. W. Cobble, W. T. Smith, Jr. and G. E. Boyd, *J. Am. Chem. Soc.*, 75, 5773 (1953) *et seq*. ^gFor H₂O₂ \rightarrow 2H⁺ + 2O⁺; for H₂O₂ \rightarrow 2H⁺ + 2O⁻, $\Sigma B_2 = 3.41$ MJ mol⁻¹. ^h2B⁺² + 2O⁻². ⁱ2Al⁺² + 2O⁻².

TABLE III. Bond Dissociation Energies in Sulphur Compounds.

Compound	$\Delta H_{f(g)}^{\phi}/kJ \text{ mol}^{-1}$	$\vec{D}_1/kJ \text{ mol}^{-1}$	$\overline{\mathrm{D}}_{2}/\mathrm{kJ}\;\mathrm{mol}^{-1}\;\mathrm{d}$
HS	+133.9	322	481 ^e
H ₂ S	-20.6	347	1132 ^f
MgS	+138.9	246	2769
BS	+334.8	474	4037
AIS	+200.8	359	3088
CS	+230.1	721	4495
CS ₂	+117.1	536	8011
SiS	+70.8	618	3316
GeS	+79.7 ^a	542	3176
NS	+263.6	447	4113 ^g
PS	+156.1	416	3666
Sb ₄ S ₆	-124.7^{a}	217	2075
OS	+6.1	481	4386 ^h
S ₂	+129.0	347	_
S ₄	+132.8 ^b	205	_
S ₆	+114.9 ^b	219	
Sa	+102.3	225	-
Cl ₂ S	-19.7	250	1673 ⁱ
ZnS	+63.1 ^c	304	3279
HgS	+12.6°	287	3438

^aRef. 6. ^bH. Braune, S. Peter and V. Neveling, Z. Naturforsch., 6a, 32 (1951). ^cNBS Technical Note 270-3, Washington, D.C. (1968). ^dFor ionisation to S⁻² or S⁻ unless noted otherwise. ^eFor HS \rightarrow H⁻ + S⁺: D₂ for HS \rightarrow H⁺ + S⁻ is 1435 kJ mol⁻¹. ¹for H₂S \rightarrow 2H⁺ + S⁺²: D₂ for H₂S \rightarrow 2H⁺ + S⁻² is 1827 kJ mol⁻¹. ^gFor NS \rightarrow N⁻² + S⁺²: D₂ for NS \rightarrow N⁺² + S⁻² is 5040 kJ mol⁻¹. ^hFor OS \rightarrow O⁻² + S⁺²: D₂ for OS \rightarrow O⁺² + S⁻² is 5517 kJ mol⁻¹. ⁱFor Cl₂S \rightarrow 2Cl⁺ + S⁻²: D₂ for Cl₂S \rightarrow 2Cl⁻ + S⁺²: D₂ for Cl₂S \rightarrow 2

TABLE IV. Bond Dissociation Energies in Oxo-anions.

Anion	Compound	$-\Delta H_f^{\phi}/kJ \text{ mol}^{-1}$		$\overline{D}_2/kJ \text{ mol}^{-1}$
(i) Carbonate				
	Na ₂ CO ₃	1130.9 ^a		5913
	K ₂ CO ₃	1150.2 ^a		5927
	Rb_2CO_3	1128.00		5936
	Cs ₂ CO ₃	1160.6		5949
			mean	5931
(ii) Nitrate(V)				
	NaNO ₃	466.5 ^b		9748
	KNO3	492.9 ^b		9748
	RbNO ₃	489.5 ^b		975 0
	CsNO ₃	494.1 ^b		9749
			mean	9749
(iii) Nitrate(III)				
(III) Millate(III)	NaNOa	359 4 ^b		5618
	KNO ₂	370.3 ^b		5616
			mean	5617
			mean	5017
(iv) Sulphate(VI)		b		
	Na ₂ SO ₄	1384.5		7769
	K ₂ SO ₄	1433.90		7774
	Rb ₂ SO ₄	1424.75		7780
	Cs2SO4	1420.00		7777
			mean	7775
(v) Sulphate(IV)				
(() =()	Cs ₂ SO ₃	1102.9 ^c		4741
	SrSO3	1169.0 ^d		4758
	PbSO ₃	656.9 ^d		4803
	Ag ₂ SO ₃	478.6 ^d		4845
	CdSO ₃	690.4 ^c		4827
			mean	4795
(vi) Selenate(VI)				
(VI) Scienale(VI)	Nao SeO4	1093 3 ^e		7443
	KaSeQ4	1110.0 ^f		7437
	MgSeQ4	983.2 ^g		7475
	$Tl_2 SeO_4$	639.3 ^h		7464
			mean	7455
(vii) Selenate(IV)	N- 6-0	oca di		4420
	Na ₂ SeU ₃	903.0 1048 5 ^j		4452
	515003	1040.J		4511
	PDSeO3	555.04		4556
	MnSeO ₃	694.1 ⁻		4520
	CaseO ₃	579.9***		4580
			mean	4520
(viii) Tellurate(IV)				
	$Na_2 TeO_3$	997.0 ⁿ		3837
	K ₂ TeO ₃	1012.9 ⁿ		3855

Bond Energies in Oxides and Oxo-anions

Anion	Compound	$-\Delta H_{f}^{\phi}/kJ \text{ mol}^{-1}$		$\overline{D}_2/kJ \text{ mol}^{-1}$
	Rb ₂ TeO ₃	999.6 ⁿ		3869
	Cs ₂ TeO ₃	983.7 ⁿ		3870
	CaTeO ₃	1060.2°		3849
			mean	3856
(ix) Chlorate(VII)				
	NaClO ₄	385.8 ^b		10942
	KClO ₄	431.8 ^p		10946
	RbClO ₄	434.7 ^b		10950
	CsClO ₄	434.7 ^b		10946
			mean	10946
(x) Chlorate(V)				
	NaClO ₃	358.6 ^b		7348
	KClO ₃	397.9 ^p		7357
	RbClO ₃	391.2 ^b		7360
			mean	7355
(xi) Chlorate(III)				
	NaClO ₂	304.2 ^b		4636
(xii) Bromate(VII)				
	KBrO ₄	287.4 ^p		9915
(xiii) Bromate(V)				
	KBrO ₃	359.8 ^p		6746
(xiv) Iodate(VII)		_		
	KIO4	460.7 ^p		8767
(xv) Iodate(V)		_		
	KIO ₃	500.0 ^p		5984
(xvi) Chromate(VI)				
	Na ₂ CrO ₄	1333.0 ^q		7848
	K ₂ CrO ₄	1388.7 ^r		7852
			mean	7850
(xvii) Manganate(VII)				
()	KMnO ₄	839.3 ^s		10894
(xviii) Manganate(VI)				
(XVIII) Manganato(VI)	Nac MnO .	1146 A ^t		7070
	K MnO	1194 1 ^t		7901
	BaMnO ₄	1225.9 ^s		8025
			mean	7998
			mean	,,,,,
(xix) Technetate(VII)	¥T-O	1014 02		0101
	KICO4	1014.8		9101
(xx) Rhenate(VII)		ALOO IV		
	KReO ₄	1100.4*		8188

^aRef. 3. ^bNBS Circular 500, Washington, D.C. (1952). ^cA. A. Shidlovskii and A. A. Voskresenskii, *Zhur. Fiz. Khim., 41*, 1246 (1967). ^dA. A. Shidlovskii and A. A. Voskresenskii, *Zhur. Fiz. Khim., 37*, 2062 (1963). ^eN. M. Selivanova and T. A. Sazykina, *Zhur. Prikl. Khim., 37*, 514 (1964). *Chem. Abs., 60*, 15215g (1964). ^fN. M. Selivanova, G. A. Zubova, I. I. Abramov, A. V. Kalinkina, and T. A. Sazykina, *Tr. Mosk. Khim-Technol. Inst., 38*, 21 (1962); *Chem. Abs., 60*, 1181f (1964). ^gN. M. Selivanova

vanova, V. A. Schneider, and R. I. Ryabova, Zhur. Neorg. Khim., 6, 27 (1961). ^hN. M. Selivanova, Zhur. Fiz. Khim., 32, 1277 (1958). ⁱT. V. Klushina, N. M. Selivanova and S. S. Titov, Tr. Mosk. Khim-Tekhnol. Inst., 49, 28 (1965); Chem. Abs., 65, 4733g (1966). ⁱN. M. Selivanova and Z. L. Leshchinskaya, Zhur. Neorg. Khim., 8, 563 (1963). ^kN. M. Selivanova and Z. L. Leshchinskaya, Zhur. Neorg. Khim., 8, 563 (1963). ^kN. M. Selivanova and Z. L. Leshchinskaya, 7r. Mosk. Khim-Technol. Inst., 38, 37 (1962); Chem. Abs., 60, 1181a (1964). ¹Z. L. Leshchinskaya and N. M. Selivanova, Izv. Vyssh. Ucheb. Zaved. Khim. Khim-Tekhnol., 9, 523 (1966); Chem. Abs., 66, 108978b (1967). ^mS. S. Bakeeva, E. A. Buketov and A. S. Pashinkin, Zhur. Neorg. Khim., 13, 1779 (1968). ⁿT. A. Khachaturyan, K. K. Samplavskaya, and M. Kh. Karapet'yants, Zhur. Neorg. Khim., 14, 1151 (1969). ^oE. A. Ivankova, K. K. Samplavskaya, and M. Kh. Karapet'yants, *54*, 5 (1967); Chem. Abs., 69, 22641m (1968). ^pG. K. Johnson, P. N. Smith, E. H. Appelman and W. N. Hubbard, Inorg. Chem., 9, 119 (1970). ^qT. Nelson, C. Moss and L. G. Hepler, J. Phys. Chem., 64, 376 (1960). ^kC. N. Muldrow, Jr., and J. G. Hepler, J. Am. Chem. Soc., 79, 4045 (1957). ^sT. A. Zordon and L. G. Hepler, Chem. Revs., 68, 737 (1968). ^tR. A. W. Hill and J. F. Williamson, J. Chem. Soc., 2417 (1957). ^uJ. W. Cobble, W. T. Smith Jr., and G. E. Boyd, J. Am. Chem. Soc., 75, 5773 (1953). ^vG. E. Boyd, J. W. Cobble, and W. T. Smith Jr., J. Am. Chem. Soc., 75, 5783 (1953).

lon	Fragment Ions	$-\Delta H_{f(g)}^{\phi}/kJ \text{ mol}^{-1}$ a	$\overline{D}_2/kJ \text{ mol}^{-1}$
HO [*]	H ⁺ + O	-1317.1	462
но_	$H^{+} + O^{-2}$	143.9	2576
H₃O⁺	$3H^{+} + O^{-2}$	-581.2	1637
LiO ⁻	$Li^{+} + O^{-2}$	66.9	1650
NaO ⁻	$Na^{+} + O^{-2}$	121.3	1629
ко	$K^{+} + O^{-2}$	138.1	1429
BO ₂	$B^{+3} + 20^{-2}$	497.9	4880
AIO ⁺	$Al^{+3} + Q^{-2}$	-1004.2	5358
AIO ₂	$Al^{+3} + 20^{-2}$	175.7	3720
CO	$C^{+3} + 20^{-2}$	441.4	5508
NO ⁺	$N^{+3} + O^{-2}$	990.4	9219
NO ⁺	$N^{+5} + 20^{-2}$	-1160.6	13434
NO ² / ₂	$N^{+3} + 20^{-2}$	359.4	5735

TABLE V. Bond Dissociation Energies in Miscellaneous Oxo-ions.

^aAll ΔH_{f}^{ϕ} data from JANAF tables, ref 3, except NO₂⁺: NBS Technical Note 270-3, Washington, D.C. (1968).

with cation is substantially greater, probably because of covalence between cation and anion. \overline{D}_2 values for the ionic dissociation of a number of miscellaneous gaseous ions are set out in Table V: the values derived for nitrate(III) from the vapour-phase ΔH_f^{ϕ} and from the ΔH_f^{ϕ} values for NaNO₂ and KNO₂ are within 2% of one another.

Discussion

Inspection of the D_1 data presented in Table I reveals a number of general trends. Firstly, and as expected, \overline{D} generally decreases in species MO, M₂O or MO₂ as M becomes heavier within any group: this is a general finding for mean bond dissociation energies. Secondly when M = H, Li, Be, Al, Ga, but not B, F or Cl, $\overline{D}_1(MO) < \overline{D}_2(M_2O)$. Thirdly, for oxides MO in which M has principle quantum number n = 2 or 3, D₁ passes through a maximum at CO and SiO: this is in accord with simple concepts of bond order in these species, being 1.5 in LiO, NaO, FO and ClO and 3.0 in CO and SiO. When n = 4 or 5, D₁ decreases monotonically from GeO to BrO and from SnO to IO: amongst the d-metal oxides MO there appear to be few horizontal regularities. Similarly \overline{D}_1 in the oxides MO₂ exhibits a maximum at CO₂ and SiO₂, when n = 2 and 3 respectively. Fourthly, \overline{D}_1 generally decreases as the formal oxidation state of M increases: molybdenum is the most obvious exception but others are tellurium, xenon and vanadium. The extent to which these exceptions are real, rather than a reflection of inaccurate data cannot be judged in the absence of further experimental data.

For heterogeneous oxides only sums of bond energy terms can be deduced from experimental data, the partitioning of the atomisation enthalpy into individual bond contribution being achieved only by making the assumption that values of \overline{D} can be transferred between similar molecules. Transfering data from NO and NO₂ gives B(N–N) in N₂O₃ and N₂O₄ of 46 kJ mol⁻¹ and 59 kJ mol⁻¹ respectively: similarly ΣB_1 for P₄O₁₀ and \overline{D}_1 for P₄O₆ give B(P=O) in P₄O₁₀ of 545 kJ mol⁻¹. In the examples of HO₂ and H₂O₂, transfer of bond energy terms implies \overline{B} (H–O) = 375 kJ mol⁻¹ and \overline{B} (O–O) = 319 kJ mol⁻¹ in these species.

Amongst the sulphides (Table III), the same general trends as observed for oxides appear to be manifested by the few data available. For gaseous

TABLE VI. Enthalpies of Gas-Phase Ionic Reactions.

	Reaction (gas-phase)	$\Delta H^{\phi}/kJ mol^{-1}$
1.	$H_2O \rightarrow H^+ + OH^-$	+1280
2.	$H_2O + H^* \rightarrow H_3O^*$	-1055
3.	$CO_2 + O^{-2} \rightarrow CO_3^{-2}$	-603
4.	$NO^{+} + O^{-2} \rightarrow NO_{2}^{-}$	2015
5.	$NO_2^+ + O^{-2} \rightarrow NO_3^{-1}$	-2379
6.	$N_2O_3 \rightarrow NO^* + NO_2$	+783
7.	$N_2O_4 \rightarrow NO_2^+ + NO_2^-$	-1748
8.	$N_2O_5 \rightarrow NO_2^+ + NO_3^-$	+836
9.	$SO_2 + O^{-2} \rightarrow SO_3^{-2}$	-873 ^a
10.	$SO_3 + O^{-2} \rightarrow SO_4^{-2}$	-1097
11.	$SeO_2 + O^{-2} \rightarrow SeO_3^{-2}$	-774 ^a
12.	$\operatorname{SeO}_3^{-1} + \operatorname{O}^{-2}^{-2} \to \operatorname{SeO}_4^{-2}$	-1212
13.	$TeO_2 + O^{-2} \rightarrow TeO_3^{-2}$	-1094
14.	$2ClO_2 + O^{-2} \rightarrow ClO_2 + ClO_3$	-1240
15.	$2ClO_3 + O^{-2} \rightarrow ClO_3 + ClO_4$	-1993
16.	$Cl_2O_7 + O^{-2} \rightarrow 2ClO_4$	-2454
17.	$Mn_2O_7 + O^{-2} \rightarrow 2MnO_4^{-1}$	-4157
18.	$Tc_2O_7 + O^{-2} \rightarrow 2TcO_4$	-4603
19.	$\operatorname{Re}_2\operatorname{O}_7 + \operatorname{O}^{-2} \rightarrow 2\operatorname{ReO}_4^-$	-1823

^aSee text.

carbonyl sulphide OCS, ΔH_{f}^{ϕ} is [3] -138.4 kJ mol⁻¹, so that $\Sigma B_1 = 1339 \text{ kJ mol}^{-1}$ almost identical with $\overline{D}_1(CO_2) + \overline{D}_1(CS_2) = 1338 \text{ kJ mol}^{-1}$: however, for gaseous OS₂, ΔH_f^{0} is [3] -56.4 kJ mol⁻¹, so that $\Sigma B_1 = 782 \text{ kJ mol}^{-1}$: this is not reproduced by transfering bond energy terms for analogous molecules, since $\overline{D}_1(SO_2) + D_1(S_2) = 863 \text{ kJ mol}^{-1}$ and $D_1(SO) + D_1(S_2) = 828 \text{ kJ mol}^{-1}$. For a number of sulphides, MS_p , \overline{D}_2 is smaller for the dissociation into M^{-2p} and S^{+2} than for the reverse dissociation into M^{+2p} and S^{-2} e.g. when M = H, N, O but not Cl. The oxides exhibit this behaviour when M = H, but not N and when M = F, Cl, Br but not I; for halogen oxo-species MO, the difference between the D_2 values, $D_2(M^+, O^-) - D_2(M^-, O^+)$ becomes less positive as M becomes heavier, and is negative when M = I,

doubtless reflecting the increasing metallic character of the heavier halogens.

The data in Tables I-III indicate that, without exception $\overline{D}_1 < \overline{D}_2$ and $\Sigma B_1 < \Sigma B_2$, even for such highly ionic compounds as $KO_{(g)}$: this generalisation is probably more a reflection of the work expended in charge separation than of the charge distribution in the undissociated molecules.

In oxoanions, \overline{D}_1 for the dissociation into neutral atoms cannot be defined, and for comparison of bond dissociation energies in a neutral oxide $\mathrm{MO}_{\mathbf{p}}$ and the oxoanion containing M in the same oxidation state such as MO_{p+1}^{-2} , \overline{D}_2 must be employed. Values for common anions are in Table IV: as with all such values, the \overline{D}_2 values in the Table are dominated by $\Sigma I(M)$. By combining data from Tables I, II, IV and V, enthalpies of gas-phase ionic reactions can be calculated, and a number of these are set out in Table VI. Of these enthalpies, those for reactions 9 and 11 are unlikely to be very accurate since the \overline{D}_2 values in SO_3^{-2} and SeO_3^{-2} are themselves not likely to be very accurate, as discussed earlier. If values of \overline{D}_2 are taken only from Cs₂SO₃ and Na₂SeO₃ respectively, the ΔH^{ϕ} values for reactions 9 and 11 become -711 kJ mol^{-1} and -510 kJ mol^{-1} respectively.

References

- 1 C. Glidewell, Inorg. Chim. Acta, 15, 85 (1975).
- C. Glidewell, J. Coordination Chem., 6, 189 (1977).
 "JANAF Thermochemical Tables", Dow Chemical Co., Midland, Michigan, 1965 et seq.
- 4 B. Lakatos, J. Bohus and G. Medgyesi, Acta Chim. Hung., 20, 1 (1959).
- 5 L. Brewer, Chem. Revs., 52, 1 (1953).
- 6 O. Kubaschewski, E. Ll. Evans and C. B. Alcock, "Metallurgical Thermochemistry", Pergamon, Oxford (1967).
- 7 K. B. Yatsimirskii, "Thermochemistry of Complex Compounds", Moscow (1951).
- 8 E. Mooser and W. B. Pearson, Acta Cryst., 12, 1015 (1959).