Stereochemistry of the Cycloaddition Reaction of 1,2-Dicyano-1,2-bis(trifluoromethyl)ethylene with Transition Metal-Propargyl Complexes

J. P. WILLIAMS and A. WOJCICKI

The McPherson Chemical Laboratory, The Ohio State University, Columbus, Ohio 43210, U.S.A. (Received September 1, 1975)

Transition metal-propargyl complexes react with a number of electrophilic molecules (E = Nu) to afford (3+2) cycloaddition products.¹⁻³ To elucidate further the proposed two-step mechanism involving a dipolar intermediate, we undertook a stereochemical study at the E–Nu bond of this reaction using *cis*- and *trans*-1,2-dicyano-1,2-bis(trifluoromethyl)ethylene (C₆F₆N₂). The two isomeric olefins had been employed previously as a stereochemical probe.⁴⁻⁶

Results and discussion

The complexes $MCH_2C \equiv CC_6H_5$ (M = $\eta^5 \cdot C_5H_5$ - $Fe(CO)_2$, $Mn(CO)_5$, and $Re(CO)_5$) react smoothly at room temperature with each of cis- and trans- $C_6F_6N_2$ in organic solvents to afford crystalline 1:1 adducts in high yields (Anal. Calcd for $C_{22}H_{12}F_6FeO_2N_2$: C, 52.17; H, 2.37. Found: C, 52.30; H, 2.41. Mass spectrum: calcd \mathbf{P}^{\dagger} , m/e 506; observed \mathbf{P}^{\dagger} , m/e 506. Satisfactory elemental analyses and mass spectra were obtained also for the other new compounds). The infrared ν_{CO} absorptions of these products agree well with those expected for metal-vinyl derivatives, Ia and Ib, sketched in Fig. 1a (e.g., for Ib, M = η^{5} -C₅H₅Fe(CO)₂, ν_{CO} 2033 and 1983 cm⁻¹ in CH₂Cl₂ soln.). The ¹H NMR spectra show signals of the methylene protons between 6.38 and 6.72 τ compared to 6.30 and 6.41 τ for the analogous tetra-

Fig. 1. (a) Structures of the cyclopentenyl ring of the two diastereomeric products of reaction between MCH₂C=CC₆H₅ and *trans*-C₆F₆N₂. (b) ¹⁹F NMR spectrum of a 1:1 mixture of Ia and Ib, $M = \eta^5$ -C₅H₅Fe(CO)₂, in CDCl₃ (chemical shifts in ppm relative to CFCl₃).

cyanoethylene cycloadducts of MCH₂C=CC₆H₅ (M = $Mn(CO)_5$ and η^5 -C₅H₅Fe(CO)₂,⁷ respectively). The ¹³C NMR spectral data, to be presented in our full account of this work, also support the proposed formulations.

The ¹⁹ F NMR spectrum of a 1:1 mixture of Ia and Ib, $M = \eta^5 \cdot C_5 H_5 Fe(CO)_2$, is presented in Fig. 1b. The spectra of the other complexes Ia and Ib are very similar. The assignment of resonances to the proper isomeric structure, Ia or Ib, is easily made from the observation⁸ that nonequivalent *cis*-CF₃ groups on adjacent carbons have larger J_{FF} than do corresponding *trans*-CF₃ groups. Thus the pair of quartets can be assigned to Ia, and the pair of singlets to Ib.

The stereochemical results for the reactions of *trans*- $C_6F_6N_2$ are listed in the Table. The corresponding study with *cis*- $C_6F_6N_2$ is complicated by isomerization to *trans*- $C_6F_6N_2$ under the reaction conditions.

The observation of both isomers, Ia and Ib, from the reactions of *trans*- $C_6F_6N_2$ with all three metalpropargyl complexes requires that the cycloaddition be non-concerted. Thus these data are consistent with

TABLE. Stereochemical Data for Reactions of MCH₂C=CC₆H₅ with trans-C₆F₆N₂

М	Solvent	Reaction Time	% Diastereomers in Product Mixture		%Stereoselectivity
			trans (Ib)	cis (Ia)	
η^{5} -C ₅ H ₅ Fe(CO) ₂	Benzene Benzene	5 min 45 min	91 84	9 16	82 68
Mn(CO) _s	Benzene Acetonitrile	44 hr 5.5 hr	66 70	34 30	32 40
Re(CO) ₅	Acetonitrile	5 min	70	30	40

the previously proposed two-step mechanism, shown below. The loss in stereochemistry would result from rotation of 180° about the C-C (E-Nu) bond in the zwitterionic intermediate which occurs before ring closure. The appreciable enhancement of the rate for Mn(CO)₅CH₂C \equiv CC₆H₅ on going from benzene to the more polar acetonitrile solvent (see the Table) is in accord with such a two-step mechanism.

Hence, from this and previously presented evidence,⁹ it appears very likely that transition metal- σ -allyl and -propargyl complexes undergo cycloaddition

reactions with electrophiles through strictly analogous pathways.

Acknowledgment

We thank the National Science Foundation for financial support.

References

- 1 A. Wojcicki, Advan. Organometal. Chem., 12, 31 (1974).
- 2 A. Wojcicki, Ann. N.Y. Acad. Sci, 239, 100 (1974).
- 3 M. Rosenblum, Accounts Chem. Res., 7, 122 (1974).
- 4 M. Green, S. Heathcock, and D. C. Wood, J. Chem. Soc. Dalton, 1564 (1973).
- 5 J. Ashley-Smith, M. Green, and D. C. Wood, J. Chem. Soc., A, 1847 (1970).
- 6 S. Proskow, H. E. Simmons, and T. L. Cairns, J. Am. Chem. Soc., 88, 5254 (1966).
- 7 D. W. Lichtenberg, Ph.D. Thesis, The Ohio State University, 1973.
- 8 S. Ng and C. H. Sederholm, J. Chem. Phys., 40, 2090 (1964).
- 9 D. W. Lichtenberg and A. Wojcicki, J. Organometal. Chem., in press.