cis-Cyclononatetraene Tricarbonyliron Complexes

M. AIROLDI, G. DEGANELLO* and J. KOZARICH

Istituto di Chimica Generale, Facoltà di Scienze, Università di Palermo, Via Archirafi 26-90123 Palermo, Italy Received July 12, 1976

Several examples have been recently reported of enhanced stability of highly reactive organic molecules by coordination to iron carbonyl groups [1]. Cyclobutadiene [2], trimethylenemethane [3], norbornadien-7-one [4] are among the most interesting cases. More recently the ability of iron carbonyls in the stabilization of cyclic polyolefins has become well documented; thus heptafulvene [5–7], pentalene [8–10], cyclononatetraene [11, 12], bicyclo-[4.3.0.0^{2,4}]nona-6,8-diene [13] and bicyclo-[4.4.0.0^{2,5}] deca-7,9-diene (13, 14] have been isolated as iron carbonyl complexes.

The asymmetric complex $[Fe(CO)_3(1-4 \eta^4 - C_9H_{10})]$ (1) $(C_9H_{10} = cyclonona-1,3,5,7-tetraene)$

has been isolated independently by Reardon and Brookhart [11] in the photochemical rearrangement of bicyclo [6.1.0] nona-2,4,6-triene (2) in the presence of Fe(CO)₅, and by us [12] in the thermal rearrangement of the same polyolefin in the presence of $Fe_2(CO)_9$. The coordination of $Fe(CO)_3$ in 1 has been established on the basis of its unsymmetric ¹H NMR spectrum [11, 12]. Here we wish to describe the symmetric isomer [Fe(CO)₃ (3-6 η^4 -C₉H₁₀)] (3)** which has been isolated by repeated chromatography of the first fraction (A_1) of the room temperature reaction of 2 with $Fe_2(CO)_9$ [12], after elimination of the dihydroindene tricarbonyl iron complex (4). The ratio of 1 to 3 is about 9:1 and is reproducible. The mass spectrum of 3 shows a parent peak at 258 m/e followed by peaks due to the loss of three carbonyl groups. The IR spectrum of 3 in the carbonyl region presents the usual three bands characteristic of Fe(CO)₃ complexes. These data do not discriminate between the asymmetric (1) and symmetric (3) derivatives which however present noticeable differences in their ¹H NMR spectra. As expected the ¹H NMR spectrum of 3 shows the presence of a symmetric plane bisecting the organic unit on $C_{4,5}$ and passing through C_9 . This fact is particularly manifested in the multiplets due to protons $H_{4,5}$ and $H_{3,6}$ (Fig. 1) in comparison with the corresponding inner and outer protons of the diene unit in 1.*

Fig. 1. The ¹H NMR spectrum of [Fe(CO)₃(3-6 η^4 -C₉H₁₀)] (3) in C₆D₆.

As does the 1-4 η^4 -C₉H₁₀ complex [11, 12], 3 undergoes thermal rearrangement to 4 and, similarly, a 1,2-shift [11] of the tricarbonyl iron group must be involved in such transformation:

Two major considerations arise from the obtainment of both 1 and 3 in the same reaction. They are related to: a) the absence of interconversion $1 \neq 3$ at least at the temperature of the reaction; b) the mechanism of formation of the two cyclononatetraene complexes. While point a) does not deserve further comments, point b) may have two ways of resolution, *i.e.* that 1 and 3 are formed by rearrangement of two different intermediates or by coordination of an active iron carbonyl species to the labile cyclononatetraene.

^{*}To whom correspondence should be addressed.

^{**}This complex has been mentioned in ref. 12; at that time its formation was not established, owing to the obtainment of a very impure sample.

^{*}The ¹H NMR spectrum in C_6D_6 of $[Fe(CO)_3(1-4 \eta^4 - C_9H_{10})]$ (1) shows multiplets at $\tau 4.47(H_{5,6,7,8})$, 5.58(H_{2,3}), 6.68(H_{1,4}), 7.71(H₉) and 8.38(H_{9'}).

Attempts to isolate a cyclononotetraene complex from the rearrangement of bicyclo[5,2,1] nona-2,5,8-triene tetracarbonyl iron [12], which is a reasonable precursor to 1, were unsuccessful. We believe that the coordination of the metal group is a step following the promotion by iron carbonyls [15] of the rearrangement of 2 to *cis*-cyclononatetraene. If this is true there should be a way to obtain 1 and 3 directly from reaction of cyclononatetraene and an iron carbonyl source. We are currently investigating this point as well as the possibility of synthesizing other metal cyclononatetraene complexes.

Acknowledgments

This work has been done with the financial support of Centro Chimica Tecnologia Composti Metallorganici Elementi Transizione – CNR – Padova, Italy.

References

1 For this and related topics see: G. Deganello, "The Organometallic Chemistry of Cyclic Polyolefins",

Maitlis, Stone, and West Eds., Academic Press, London, in press; G. Deganello, P. Uguagliati, L. Calligaro, P. L. Sandrini, and F. Zingales, *Inorg. Chim. Acta*, 13, 247 (1975).

- 2 G. F. Emerson, L. Watts, and R. Pettit, J. Am. Chem. Soc., 87, 131 (1965).
- 3 G. F. Emerson, K. Ehrlich, W. P. Giering and P. C. Lauterbur, J. Am. Chem. Soc., 88, 3172 (1966).
- 4 J. M. Lendesberg and J. Sieczkowski, J. Am. Chem. Soc., 90, 1655 (1968).
- D. J. Ehntholt and R. C. Kerber, *Chem. Comm.*, 1451 (1970); *J. Am. Chem. Soc.*, 95, 2927 (1973).
 G. T. Rodeheaver, G. C. Farrant and D. F. Hunt, *J.*
- 6 G. T. Rodeheaver, G. C. Farrant and D. F. Hunt, J. Organomet. Chem., 30, 131 (1971).
- 7 B. F. G. Johnson, J. Lewis, P. McArdle and G. L. P. Randall, J. Chem. Soc. Dalton, 2076 (1972).
- 8 D. F. Hunt and J. W. Russel, J. Am. Chem. Soc., 94, 7198 (1972); J. Organomet. Chem., 46, C22 (1972); 104, 373 (1976).
- 9 G. Deganello and L. Toniolo, J. Organomet. Chem., 74, 255 (1974).
- 10 S. A. R. Knox and F. G. A. Stone, Acc. Chem. Res., 10, 321 (1974), and references therein.
- 11 G. Deganello, H. Maltz and J. Kozarich, J. Organomet. Chem., 60, 323 (1973).
- 12 E. J. Reardon, Jr. and M. Brookhart, J. Am. Chem. Soc., 95, 4311 (1973).
- 13 G. Sholes, G. R. Graham and M. Brookhart, J. Am. Chem. Soc., 96, 5665 (1974).
- 14 F. A. Cotton and G. Deganello, J. Am. Chem. Soc., 94, 2142 (1972); J. Organomet. Chem., 38, 147 (1972).
- 15 G. Deganello, Chem. and Ind. (Milan), 56, 303 (1974).