On the Existence of Dioxygen Adducts of Ruthenium (II) **Tertiary&sine and Phosphine Complexes**

B. R. JAMES, L. D. MARKHAM, A. D. RATTRAY and D. K. W. WANG

Department of Chemistry, University of British Columbia, Vancouver, Canada V6T I WJ

(Received August 18, 1975)

An often quoted [I] example of the only isolated and well-characterized dioxygen adduct of a d^6 transition metal, outside that of heme systems [2] [iron(H) porphyrins] , is the ruthenium(I1) complex $RuCl₂(AsPh₃)₃O₂$ [3] . which is said to be formed by reaction of O_2 with $RuCl₂(AsPh₃)₃$. We show here the non-existence of both of these complexes, and also report on our efforts to detect the more likely RuCl₂- $(LPh₃)₂O₂$ complexes (L = As, P), often postulated as intermediates in catalytic oxidation reactions [4]. It should be pointed out that we consider the dioxygen complexes [5] $Ru(NO)X(PPh₃)₂O₂$ to be formally derivatives of ruthenium(O).

Experimental and Discussion

Solutions containing $RuCl₂(LPh₃)₂$ can be made by treatment of $RuCl₃(LPh₃)₂ \cdot CH₃OH$ complexes [6] with 1 atm H_2 in NN-dimethylacetamide at 25 °C. The stoichiometry of reaction (1) has been demonstrated, and in the coordinating solvent, the $RuCl₂$ -(LPh,), complexes could be present as solvated monomers [7], although ³¹P nmr data in other solvents [8] suggest the presence of five-coordinate chloride-bridged dimers.

$$
\text{RuCl}_{3}(\text{LPh}_{3})_{2} + 0.5 \text{ H}_{2} \longrightarrow \text{RuCl}_{2}(\text{LPh}_{3})_{2} + \text{HC1}
$$
\n(1)

The visible spectrum of the $RuCl₂(PPh₃)₂$ solution is identical with that obtained during our study [7] of PPh₃ dissociation from $RuCl₂(PPh₃)₃$, and addition of PPh₃ to the resulting solution of reaction (1) gives the tris-phosphine complex. However, $RuCl₂ (AsPh₃)₂$ solutions are completely unreactive toward AsPh, (possibly because the arsine fails to cleave a chloride bridge), and we have also been unable to synthesize $RuCl₂(AsPh₃)₃$ by the reported procedure [9] from $RuCl₃·3H₂O$ and AsPh₃, or via various precursors such as ruthenium(I1) sulphoxides $[10]$, the blue ruthenium solutions $[11]$, or RuCl₂- $(PPh₃)$ ₃ [6]. Such procedures give rise to RuCl₃- $(AsPh₃)₃$, RuCl₃ $(AsPh₃)₂$ solvent, or $[RuCl₂$. $(AsPh₃)₂$] ₂, or mixtures of these [12].

The reported $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ 1:1 O₂ absorption by RuCl₂- $(AsPh₃)₃$ must be due to oxidation of 2 mol of coordinated arsine in complexes such as those listed above. The so-called 880 cm^{-1} peroxide band is attributable to v_{As-0} , and the paramagnetism and esr signals (assigned to a $Ru^{III} - O_2^-$ moiety) are likely due to Ru(II1) arsine oxide complexes, which are known [121. Infrared data ascribed [3] to reaction (2) may be accounted for by the

$$
RuCl2(AsPh3)3O2 $\xrightarrow{\text{H2}_{2}}$ HRuCl(AsPh₃)₃ (2)
880 cm⁻¹ 1960 cm⁻¹
$$

sequence shown below:

The solutions containing triphenylarsine oxide complexes can be reduced by H_2 in solution back to $RuCl₂(AsPh₃)₂$, and this can undergo reaction with a further mol of H_2 to give the chlorohydrido complex. Again we find that solutions of $HRuCl(AsPh₃)₂$ are unreactive toward excess arsine, although the corresponding phosphine system readily forms the trisphosphine complex (see also ref. 13), and we have been unable to synthesize the HRuCl(AsPh₃)₃ complex.

Formation of dioxygen complexes in solution is invariably exothermic [14] and is favoured at least thermodynamically at lower temperatures. Solutions of $RuCl₂(AsPh₃)₂$ or $RuCl₂(PPh₃)₂$ are completely unreactive toward O_2 in NN-dimethylformamide at -23 °C or in toluene at -39 °C, as studied by u.v./ vis spectroscopy. A 10^{-3} *M* solution of RuCl₂(PPh₃)₃ in toluene at -39 °C contains an equilibrium mixture of the tris- and bis-phosphine species [7], and under an $O₂$ atmosphere, the spectrum slowly changes to that of $RuCl₂(PPh₃)₂$ *i.e.* reaction (3) is pushed to the right due to removal of $PPh₃$ as the phosphine oxide.

$$
\mathrm{RuCl}_2(\mathrm{PPh}_3)_3 \rightleftharpoons \mathrm{RuCl}_2(\mathrm{PPh}_3)_2 + \mathrm{PPh}_3 \tag{3}
$$

By adding small amounts of $O₂$ from a gas-tight syringe it is possible to demonstrate that at 20 \degree C, 0.5 mol O_2 will generate 1 mol OPPh₃ and 1 mol of $RuCl₂(PPh₃)₂$. Since neither free PPh₃ nor $RuCl₂$ - $(PPh₃)₃$ (fully formed by addition of excess phosphine) reacts with $O₂$ at the sub-zero temperature, the data imply that phosphine oxidation at these conditions occurs via attack of *external* phosphine

At ambient temperatures, oxidation of $RuCl₂$ - $(PPh₃)_n$, n = 2 or 3, (initially to green solutions which yield $[RuCl_2(OPPh_3)]_n$) occurs according to reaction (4) $[4, 7]$.

$$
\text{RuCl}_{2}(\text{PPh}_{3})_{n} + \frac{n}{2}O_{2} \longrightarrow \text{'}\text{RuCl}_{2}(\text{OPPh}_{3})' +
$$
\n
$$
(n-1)\text{OPPh}_{3} \qquad (4)
$$
\n
$$
\text{orange} \qquad \text{green}
$$

nd it now appears necessary to invoke an O-atom transfer mechanism [15] within $RuCl₂(PPh₃)₂O₂$, although the activation energy for this process must be greater than that for the intermolecular process. Stopped-flow measurements have failed to detect any intermediates for reaction (4) in benzene.

Adtnowledgments

We thank the N.R.C. for financial support, and Johnson, Matthey Ltd. for the loan of ruthenium.

References

- 1 G. Henrici-Olivé and S. Olivé, *Angew. Chem., Int. Ed. Engl, 13, 29 (1974).*
- L. Vaska, *Act. Chem. Res., 9, 175* (1976).
- M. M. Taqui Khan, R. K. Andal, and P. T. Manoharan, Chem. Comm., 561 (1971); M. M. Taqui Khan and A. E. Martell, 'Homogeneous Catalysis by Metal Complexes', Vol. 1, Academic Press, New York, 1974, p. 103.
- S. Cenini, A. Mantovani, A. Fusi and M. Keubler, *Gazz*. *Chim. Ital., 105, 255* (1975).
- *5* B. W. Graham, K. R. Laing, C. J. O'Connor and W. R. Roper, *J. Chem. Sot. Dalton, 1237* (1972).
- *6* T. A. Stephenson and G. Wilkinson, *J. Inorg. Nucl. Chem., 28, 945* (1966).
- *I* B. R. James and L. D. Markham, *Inorg. Chem.,* 13, 97 (1974).
- *8* P. R. Hoffman and K. G. Caulton, *J. Am.* Chem. Sot., 97,422l (1975).
- *9* M. M. Taqui Khan and S. Vancheesan, *Proc. Department ofAtomic t?nergy, India,* 1969, Vol. II, p, 58.
- 10 R. S. McMillan, A. Mercer, B. R. James and J. Trotter, *J. Bern. Sot. Dalton, 1006* (1975).
- 11 D. Rose and G. Wilkinson, *J. Chem. Sot. A,* 1791 (1970).
- *12* R. K. Poddar and U. Agarwala, *J. Inorg. Nucl. Chem., 35, 567* (1973); R. K. Poddar, I. P. Khuller and U. AgarwaJa, *Inorg. Nucl. Chem. Letters, 10. 221* (1974).
- *13* B. R. James, L. D. Markham and D. K. W. Wang, Chem. *Comm., 439* (1974).
- *14* B. R. James, 'Interaction of Dioxygen with Metalloporphyrins' in 'The Porphyrins', ed. D. H. Dolphin, Academic Press, New York, in press.
- 5 J. Halpern and A. L. Pickard, *Inorg. Chem.*, 9, 2798 (1970).