Raman Studies of the SbBr₃/(n-but)₄ NBr System in Dichloromethane

G. C. ALLEN* and R. F. McMEEKING

Department of Inorganic Chemistry, The University, Bristol BS8 1TS, U.K.

Received September 29, 1976

Recently ther has been considerable interest in the vibrational spectra of both single valence and mixedvalence halo-coordinated antimony compounds [1-4]. Definitive assignments for the spectra of compounds of type RSbBr₄ would be greatly aided by a knowledge of the Raman and infrared spectra of the isolated SbBr₄⁻ species. Ahlijah and Goldstein have published Raman data for $(n-but)_4$ SbBr₄ dissolved in both CH₂Cl₂ and MeNO₂ [1]. We report here a similar study in which various SbBr₃/Br⁻ concentration ratios have been used with a view to establishing whether the spectra are representative of a discrete species or some kind of mixture.

Experimental

Raman spectra were recorded using a Coderg PHO spectrometer with a Krypton laser. Yellow light (568.2nm) was used as source radiation. Reagent grade SbBr₃ (Hopkin and Williams) and $(n-but)_4$ NBr (Eastman-Kodak) were used in various molar ratios dissolved in dichloromethane which had been freshly distilled from P₂O₅. Runs were made using two different SbBr₃ molar concentrations (0.12*M* and 0.1*M*), but there appeared to be little concentration dependence in the form of the spectra.

Results and Discussion

Raman spectra recorded from solutions containing $SbBr_3$ and Br^- in a number of molar ratios are shown in Figure 1. Here spectra of solutions with the same Sb molar concentration have been taken using identical instrumental settings.

Figure 1(a) shows the spectrum of SbBr₃. From a consideration of intensity and polarisation data, and assuming C_{3v} symmetry for the species in solution, the band at 248cm⁻¹ can be assigned to the A₁ and the shoulder at ~249cm⁻¹ to the E stretching mode. When bromide is added to this solution the species formed initially is probably Sb₂Br₇.

Fig. 1. Raman spectra of some solutions of antimony(III) bromide in dichloromethane.

As can be seen from Figures 1(b) and 1(c) the parent SbBr3 peak is still discernible for a (Br7/SbBr3) molar ratio of 0.33, but is no longer apparent when this ratio is increased to 0.66. The spectrum obtained for a molar ratio of 1.0 (Figure 1(d)) is in good agreement with that published by Ahlijah and Goldstein [1]. However, it still contains the feature at ~ 235 cm⁻¹ which can be attributed to Sb₂Br₇. The bands at 203 and 165cm⁻¹ may be due to the SbBr₄⁻ species (with the possibility of a partially obscured band at higher energy). The presence of other species cannot be discounted readily though, especially when the spectrum attributed to the Sb₂Br₉³⁻species in (Et₄N)₃Sb₂Br₉ is considered [5]. This compound shows strong broad maxima in the Raman spectrum at a frequency of 201 and 155cm⁻¹ with a weaker

^{*}Present address: Central Electricity Generating Board, Berkeley Nuclear Laboratories, Berkeley, Gloucestershire GL13 9PB, U.K.

band at 115cm⁻¹. The addition of further bromide leads to a reduction and change in shape of the band at ~ 158 cm⁻¹. The limiting spectrum (Figure 1(f)) formed with a molar ratio of ~ 3.0 is the same as that published by Adams and Downs [5], and very likely corresponds to the species SbBr_6^{3-} . Certainly if Sb₂Br₉³⁻ is formed it is not exclusively present in a solution with a (Br⁻/SbBr₃) molar ratio of 1.5, where it would appear there is an equilibrium concentration of SbBr₆³⁻. Two limiting representations for the reaction scheme would be:

 $2SbBr_{3} \stackrel{Br^{-}}{\underset{\sim}{\longrightarrow}} Sb_{2}Br_{7} \stackrel{Br^{-}}{\underset{\sim}{\longrightarrow}} 2SbBr_{4}(Sb_{2}Br_{8}{}^{2-?}) \stackrel{4Br^{-}}{\underset{\sim}{\longrightarrow}}$ $2SbBr_{6}{}^{3-}$

 $2SbBr_3 \stackrel{Br}{\longrightarrow} Sb_2Br_7 \stackrel{2Br}{\longrightarrow} Sb_2Br_9^3 \stackrel{3Br}{\longrightarrow} 2SbBr_6^{3-}$

To ascertain which of these two reaction schemes is the more realistic, detailed, careful Raman measurements would be required together with conductivity and solubility studies.

The Raman spectrum assigned to the SbBr6³⁻ species in CH₂Cl₂ is rather unusual. It bears little re-

semblance to the vibrational spectra measured from solid state studies of bromoantimonate(III) complexes [6], which implies the presence of a completely different kind of distortion from the regular octahedral arrangement for the anion in this solution. In this respect the suggestion of C_{3v} symmetry made by Adams and Downs [5] seems particularly attractive. Under these circumstances the SbBr₆³⁻ anion would be expected to possess a distorted octahedral structure with three short bonds opposite three long bonds.

References

- 1 G. W. Ahlijah and M. Goldstein, J. Chem. Soc. A, 326 (1970).
- 2 R. J. H. Clark and W. R. Trumble, J. Chem. Soc. Dalton, 1145 (1976).
- 3 C. J. Adams and A. J. Downs, J. Inorg. Nucl. Chem., 34, 1829 (1972).
- 4 J. D. Donaldson, M. J. Tricker and B. W. Dale, J. Chem. Soc. Dalton, 893 (1972).
- 5 C. J. Adams and A. J. Downs, Chem. Comm., 1699 (1970).
- 6 G. C. Allen and R. F. McMeeking, Inorg. Chim. Acta, submitted for publication.